Estimation of the Hurst parameter from continuous noisy data

Pavel Chigansky, Marina Kleptsyna

Research output: Contribution to journalArticlepeer-review

Abstract

This paper addresses the problem of estimating the Hurst exponent of the fractional Brownian motion from continuous time noisy sample. When the Hurst parameter is greater than 3{4, consistent estimation is possible only if either the length of the observation interval increases to infinity or intensity of the noise decreases to zero. The main result is a proof of the Local Asymptotic Normality (LAN) of the model in these two regimes which reveals the optimal minimax estimation rates.

Original languageEnglish
Pages (from-to)2343-2385
Number of pages43
JournalElectronic Journal of Statistics
Volume17
Issue number2
DOIs
StatePublished - 2023

Bibliographical note

Publisher Copyright:
© 2023, Institute of Mathematical Statistics. All rights reserved.

Keywords

  • Fractional Brownian motion
  • Hurst parameter estimation
  • Local Asymptotic Normality

Fingerprint

Dive into the research topics of 'Estimation of the Hurst parameter from continuous noisy data'. Together they form a unique fingerprint.

Cite this