Evaluation of a CT-Guided Robotic System for Precise Percutaneous Needle Insertion

Eliel Ben-David*, Moran Shochat, Ido Roth, Isaac Nissenbaum, Jacob Sosna, S. Nahum Goldberg

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

55 Scopus citations

Abstract

Purpose: To assess overall targeting accuracy for CT-guided needle insertion using prototype robotic system for common target sites. Materials and Methods: Using CT guidance, metallic (2 × 1 mm) targets were embedded in retroperitoneum (n = 8), kidneys (n = 8), and liver (n = 14) of 8 Yorkshire pigs (55–65 kg). Bronchial bifurcations were targeted in the lung (n = 13). CT datasets were obtained for planning and controlled needle placement of commercially available 17- to 19-gauge needles (length 15–20 cm) using a small, patient-mounted, CT-guided robotic system with 5° of motion. Mean distance to target was 92.9 mm ± 19.7 (range, 64–146 mm). Planning included selection of target, skin entry point, and 4.6 ± 1.3 predetermined checkpoints (range, 2–9) where additional CT imaging was performed to permit stepwise correction of needle trajectory path as needed. Scanning and needle advancement were coordinated with breath motion using respiratory gating. Accuracy was assessed as distance from needle tip to predefined target. Results: Of 45 needle insertions performed, 2 were unsuccessful owing to technical issues. Accuracy of targeting was 1.2–1.4 mm ± 0.6 for kidney, retroperitoneum, and lung (P =.51), with 2.9 mm ± 1.9 accuracy for liver (P =.0003). This was achieved in 39 cases (91%) using a single insertion. Intraprocedural target movement was detected (3.5 mm ± 2.1 in retroperitoneum and 6.4 mm ± 3.9 in liver); the system compensated for 52.9% ± 30.3 of this movement. One pneumothorax was the only complication (8%). Conclusions: Accurate needle insertion (< 3 mm error) can be achieved in common target sites when using a CT-guided robotic system. Stepwise checks with corrective angulation can potentially overcome issues of target movement during a procedure from organ deformity and other causes.

Original languageEnglish
Pages (from-to)1440-1446
Number of pages7
JournalJournal of Vascular and Interventional Radiology
Volume29
Issue number10
DOIs
StatePublished - Oct 2018
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2018 SIR

Fingerprint

Dive into the research topics of 'Evaluation of a CT-Guided Robotic System for Precise Percutaneous Needle Insertion'. Together they form a unique fingerprint.

Cite this