Exosomal MicroRNA Transfer into Macrophages Mediates Cellular Postconditioning

Geoffrey De Couto, Romain Gallet, Linda Cambier, Ervin Jaghatspanyan, Nupur Makkar, James Frederick Dawkins, Benjamin P. Berman, Eduardo Marbán*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

255 Scopus citations

Abstract

Background: Cardiosphere-derived cells (CDCs) confer cardioprotection in acute myocardial infarction by distinctive macrophage (Mφ) polarization. Here we demonstrate that CDC-secreted exosomes (CDCexo) recapitulate the cardioprotective effects of CDC therapy known as cellular postconditioning. Methods: Rats and pigs underwent myocardial infarction induced by ischemia/reperfusion before intracoronary infusion of CDCexo, inert fibroblast exosomes (Fbexo; control), or vehicle. Two days later, infarct size was quantified. Macrophages were isolated from cardiac tissue or bone marrow for downstream analyses. RNA sequencing was used to determine exosome content and alterations in gene expression profiles in Mφ. Results: Administration of CDCexo but not Fbexo after reperfusion reduces infarct size in rat and pig models of myocardial infarction. Furthermore, CDCexo reduce the number of CD68+ Mφ within infarcted tissue and modify the polarization state of Mφ so as to mimic that induced by CDCs. CDCexo are enriched in several miRNAs (including miR-146a, miR-181b, and miR-126) relative to Fbexo. Reverse pathway analysis of whole-transcriptome data from CDCexo-primed Mφ implicated miR-181b as a significant (P=1.3x10-21) candidate mediator of CDC-induced Mφ polarization, and PKCδ (protein kinase C δ) as a downstream target. Otherwise inert Fbexo loaded selectively with miR-181b alter Mφ phenotype and confer cardioprotective efficacy in a rat model of myocardial infarction. Adoptive transfer of PKCδ-suppressed Mφ recapitulates cardioprotection. Conclusions: Our data support the hypothesis that exosomal transfer of miR-181b from CDCs into Mφ reduces PKCδ transcript levels and underlies the cardioprotective effects of CDCs administered after reperfusion.

Original languageEnglish
Pages (from-to)200-214
Number of pages15
JournalCirculation
Volume136
Issue number2
DOIs
StatePublished - 11 Jul 2017
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2017 American Heart Association, Inc.

Keywords

  • cardioprotection
  • exosome
  • macrophage
  • miRNA
  • myocardial infarction

Fingerprint

Dive into the research topics of 'Exosomal MicroRNA Transfer into Macrophages Mediates Cellular Postconditioning'. Together they form a unique fingerprint.

Cite this