Abstract
Let G be a finite group and let p be a prime such that (p, |G|) = 1. We study conditions under which the Abelian group script F signp[G] has a few G-orbits whose union generate it as an expander (equivalently, all the discrete Fourier coefficients (in absolute value) of this generating set are bounded away uniformly from one). We prove a (nearly sharp) bound on the distribution of dimensions of irreducible representations of G which implies the existence of such expanding orbits. We further show a class of groups for which such a bound follows from the expansion properties of G. Together, these lead to a new iterative construction of expanding Cayley graphs of nearly constant degree.
Original language | English |
---|---|
Pages (from-to) | 659-680 |
Number of pages | 22 |
Journal | Combinatorica |
Volume | 24 |
Issue number | 4 |
DOIs | |
State | Published - 2004 |