Abstract
Employing Differential Privacy (DP), the state-of-the-art privacy standard, to answer aggregate database queries poses new challenges for users to understand the trends and anomalies observed in the query results: Is the unexpected answer due to the data itself, or is it due to the extra noise that must be added to preserve DP? We propose to demonstrate DPXPlain, the first system for explaining group-by aggregate query answers with DP. DPXPlain allows users to compare values of two groups and receive a validity check, and further provides an explanation table with an interactive visualization, containing the approximately ‘top-k’ explanation predicates along with their relative influences and ranks in the form of confidence intervals, while guaranteeing DP in all steps.
Original language | English |
---|---|
Pages (from-to) | 3962-3965 |
Number of pages | 4 |
Journal | Proceedings of the VLDB Endowment |
Volume | 16 |
Issue number | 12 |
DOIs | |
State | Published - 2023 |
Event | 49th International Conference on Very Large Data Bases, VLDB 2023 - Vancouver, Canada Duration: 28 Aug 2023 → 1 Sep 2023 |
Bibliographical note
Publisher Copyright:© 2023, VLDB Endowment. All rights reserved.