Expression, cross-linking, and characterization of recombinant chitin binding resilin

Guokui Qin, Shaul Lapidot, Keiji Numata, Xiao Hu, Sigal Meirovitch, Mara Dekel, Itai Podoler, Oded Shoseyov*, David L. Kaplan

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

117 Scopus citations

Abstract

Resilin is a polymeric rubber-like protein secreted by insects to specialized cuticle regions, in areas where high resilience and low stiffness are required. Resilin binds to the cuticle polysaccharide chitin via a chitin binding domain and is further polymerized through oxidation of the tyrosine residues resulting in the formation of dityrosine bridges and assembly of a high-performance protein-carbohydrate composite material. We describe the mechanical, structural and biochemical function of chitin binding recombinant Drosophila melanogaster resilin. Various resilin constructs were cloned including the full length gene enabling Ni-NTA purification, as well as heat and salt precipitation for rapid and efficient purification. The binding isotherms and constants (Kd, Bmax) of resilin to chitin via its chitin binding domain were determined and displayed high affinity to chitin, implying its important role in the assembly of the resilin-chitin composite. The structural and elastic properties were investigated using Fourier transform infrared spectroscopy, circular dichroism, and atomic force microscopy with peroxidase cross-linked solid resilin materials. Generally, little structural organization was found by these biophysical methods, suggesting structural order was not induced by the dityrosine cross-links. Further, the elastomeric properties found from the full length protein compared favorably with the shorter resilin generated previously from exon 1. The unusual elastomeric behavior of this protein suggests possible utility in biomaterials applications.

Original languageEnglish
Pages (from-to)3227-3234
Number of pages8
JournalBiomacromolecules
Volume10
Issue number12
DOIs
StatePublished - 14 Dec 2009

Fingerprint

Dive into the research topics of 'Expression, cross-linking, and characterization of recombinant chitin binding resilin'. Together they form a unique fingerprint.

Cite this