TY - JOUR
T1 - Expression of the entire polyhydroxybutyrate operon of Ralstonia eutropha in plants
AU - Mozes-Koch, Rita
AU - Tanne, Edna
AU - Brodezki, Alexandra
AU - Yehuda, Ran
AU - Gover, Ofer
AU - Rabinowitch, Haim D.
AU - Sela, Ilan
N1 - Publisher Copyright:
© 2017 The Author(s).
PY - 2017/11/21
Y1 - 2017/11/21
N2 - Background: Previously we demonstrated that an entire bacterial operon (the PRN operon) is expressible in plants when driven by the Tomato -yellow-leaf-curl-virus (TYLCV) -derived universal vector IL-60. Petroleum-derived plastics are not degradable, and are therefore harmful to the environment. Fermentation of bacteria carrying operons for polyhydroxyalkanoates (PHAs) produces degradable bioplastics which are environmentally friendly. However, bacterial production of bioplastics is not cost-effective, and attention is turning to their production in plants. Such "green" plastics would be less expensive and environmentally friendly. Hence, attempts are being made to substitute petroleum-derived plastics with "green" plastics. However, transformation of plants with genes of operons producing bioplastics has deleterious effects. Transformation of plastids does not cause deleterious effects, however it is a complicated procedures. Results: We have developed another TYLCV-based vector (SE100) and show that yet another bacterial operon (the phaCAB operon) when driven by SE100 is also expressed in plants. We employed the combination of SE100 and the phaCAB operon to drive the operon to the plastids and produce in plants a biodegradable plastic [polyhydroxybutyrate (PHB)]. Here we indicate that the bacterial operon (phaCAB), when driven by the newly developed universal plant vector SE100 is directed to chloroplasts and produces in plants PHB, a leading PHA. The PHB-producing plants circumvent the need for complicated technical procedures. Conclusion: The viral vector system SE100 facilitated the production of the bio-plastic poly-3-hydroxybutyrate. This was achieved by using the full pha-CAB operon indicating that TYLCV based system can transcribe and translate genes from bacterial operons controlled by a single cis element. Our data hints to the participation of the chloroplasts in these processes.
AB - Background: Previously we demonstrated that an entire bacterial operon (the PRN operon) is expressible in plants when driven by the Tomato -yellow-leaf-curl-virus (TYLCV) -derived universal vector IL-60. Petroleum-derived plastics are not degradable, and are therefore harmful to the environment. Fermentation of bacteria carrying operons for polyhydroxyalkanoates (PHAs) produces degradable bioplastics which are environmentally friendly. However, bacterial production of bioplastics is not cost-effective, and attention is turning to their production in plants. Such "green" plastics would be less expensive and environmentally friendly. Hence, attempts are being made to substitute petroleum-derived plastics with "green" plastics. However, transformation of plants with genes of operons producing bioplastics has deleterious effects. Transformation of plastids does not cause deleterious effects, however it is a complicated procedures. Results: We have developed another TYLCV-based vector (SE100) and show that yet another bacterial operon (the phaCAB operon) when driven by SE100 is also expressed in plants. We employed the combination of SE100 and the phaCAB operon to drive the operon to the plastids and produce in plants a biodegradable plastic [polyhydroxybutyrate (PHB)]. Here we indicate that the bacterial operon (phaCAB), when driven by the newly developed universal plant vector SE100 is directed to chloroplasts and produces in plants PHB, a leading PHA. The PHB-producing plants circumvent the need for complicated technical procedures. Conclusion: The viral vector system SE100 facilitated the production of the bio-plastic poly-3-hydroxybutyrate. This was achieved by using the full pha-CAB operon indicating that TYLCV based system can transcribe and translate genes from bacterial operons controlled by a single cis element. Our data hints to the participation of the chloroplasts in these processes.
KW - "Green" plastic
KW - Chloroplasts
KW - Plant vector SE100
KW - Polyhydroxybutyrate
UR - http://www.scopus.com/inward/record.url?scp=85034739980&partnerID=8YFLogxK
U2 - 10.1186/s13036-017-0062-7
DO - 10.1186/s13036-017-0062-7
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85034739980
SN - 1754-1611
VL - 11
JO - Journal of Biological Engineering
JF - Journal of Biological Engineering
IS - 1
M1 - 44
ER -