TY - JOUR
T1 - Expression of three alternative acetylcholinesterase messenger RNAs in human tumor cell lines of different tissue origins
AU - Karpel, Rachel
AU - Aziz-Aloya, Revital Ben
AU - Sternfeld, Meira
AU - Ehrlich, Gal
AU - Ginzberg, Dalia
AU - Tarroni, Paola
AU - Clementi, Francesco
AU - Zakut, Haim
AU - Soreq, Hermona
PY - 1994/2
Y1 - 1994/2
N2 - To study the molecular mechanisms underlying the intensive expression of acetylcholinesterase (AChE) in different tumor types, we characterized levels and composition of its messenger RNA (mRNA) sequences in heterologous tumor cell lines, primary tumor biopsies, and normal fetal and adult tissues and determined their exon-intron origin within the corresponding ACHE gene. Reverse transcription followed by polymerase chain reaction (RT-PCR) revealed three alternatively spliced ACHE mRNAs in NT2/D1 teratocarcinoma, NCI-N-592 small cell lung carcinoma, TE671 medulloblastoma, K-562 erythroleukemia, and 293 transformed embryonal kidney cells. The three ACHE mRNAs include the principal species expressed in brain and muscle and two additional transcripts containing insertions of 751 or 829 residues downstream from the exon 4 domain. The inserted region, which represents an intron in brain and muscle, is expressed in the tumor cell lines either as a 'readthrough' form or with 78 residues deleted from its 5' end. A major band of 2.5 kb was labeled with ACHE cDNA in poly(A)+ RNA blots from medulloblastoma cells or brain tissue, whereas a PCR-amplified probe from the inserted domain labeled a 3.4-kb band but not the 2.5-kb band in poly(A)+ RNA from small cell lung carcinoma. The ACHE mRNAs including the alternative insertions were found only in cell lines with levels of the principal ACHE mRNA species equal to or higher than those in brain (1-10 molecules/cell), determined by following the kinetics of mRNA PCR amplification. Genomic DNA sequencing revealed that the inserted domains in the ACHE mRNAs expressed in the tumor cell lines encode C-terminal peptides of 40 and 14 residues. These include a free cysteine, terminate with the consensus HG element, and continue by a 29-residue-long C- terminal hydrophobic cleavable peptide, properties characteristic of precursors to phosphoinositide (PI)-linked proteins. In extention of the reported expression of PI-linked AChE in hemopoietic cells including K-562, our findings demonstrate the existence of ACHE mRNAs with the potential to encode one hydrophilic and two PI-linked forms of AChE in tumor cells from both hemopoietic and nonhemopoietic origins.
AB - To study the molecular mechanisms underlying the intensive expression of acetylcholinesterase (AChE) in different tumor types, we characterized levels and composition of its messenger RNA (mRNA) sequences in heterologous tumor cell lines, primary tumor biopsies, and normal fetal and adult tissues and determined their exon-intron origin within the corresponding ACHE gene. Reverse transcription followed by polymerase chain reaction (RT-PCR) revealed three alternatively spliced ACHE mRNAs in NT2/D1 teratocarcinoma, NCI-N-592 small cell lung carcinoma, TE671 medulloblastoma, K-562 erythroleukemia, and 293 transformed embryonal kidney cells. The three ACHE mRNAs include the principal species expressed in brain and muscle and two additional transcripts containing insertions of 751 or 829 residues downstream from the exon 4 domain. The inserted region, which represents an intron in brain and muscle, is expressed in the tumor cell lines either as a 'readthrough' form or with 78 residues deleted from its 5' end. A major band of 2.5 kb was labeled with ACHE cDNA in poly(A)+ RNA blots from medulloblastoma cells or brain tissue, whereas a PCR-amplified probe from the inserted domain labeled a 3.4-kb band but not the 2.5-kb band in poly(A)+ RNA from small cell lung carcinoma. The ACHE mRNAs including the alternative insertions were found only in cell lines with levels of the principal ACHE mRNA species equal to or higher than those in brain (1-10 molecules/cell), determined by following the kinetics of mRNA PCR amplification. Genomic DNA sequencing revealed that the inserted domains in the ACHE mRNAs expressed in the tumor cell lines encode C-terminal peptides of 40 and 14 residues. These include a free cysteine, terminate with the consensus HG element, and continue by a 29-residue-long C- terminal hydrophobic cleavable peptide, properties characteristic of precursors to phosphoinositide (PI)-linked proteins. In extention of the reported expression of PI-linked AChE in hemopoietic cells including K-562, our findings demonstrate the existence of ACHE mRNAs with the potential to encode one hydrophilic and two PI-linked forms of AChE in tumor cells from both hemopoietic and nonhemopoietic origins.
UR - http://www.scopus.com/inward/record.url?scp=0028365611&partnerID=8YFLogxK
U2 - 10.1006/excr.1994.1039
DO - 10.1006/excr.1994.1039
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:0028365611
SN - 0014-4827
VL - 210
SP - 268
EP - 277
JO - Experimental Cell Research
JF - Experimental Cell Research
IS - 2
ER -