TY - JOUR
T1 - Extracting Behaviorally Relevant Traits from Natural Stimuli
T2 - Benefits of Combinatorial Representations at the Accessory Olfactory Bulb
AU - Kahan, Anat
AU - Ben-Shaul, Yoram
N1 - Publisher Copyright:
© 2016 Kahan, Ben-Shaul.
PY - 2016/3
Y1 - 2016/3
N2 - For many animals, chemosensation is essential for guiding social behavior. However, because multiple factors can modulate levels of individual chemical cues, deriving information about other individuals via natural chemical stimuli involves considerable challenges. How social information is extracted despite these sources of variability is poorly understood. The vomeronasal system provides an excellent opportunity to study this topic due to its role in detecting socially relevant traits. Here, we focus on two such traits: a female mouse’s strain and reproductive state. In particular, we measure stimulus-induced neuronal activity in the accessory olfactory bulb (AOB) in response to various dilutions of urine, vaginal secretions, and saliva, from estrus and non-estrus female mice from two different strains. We first show that all tested secretions provide information about a female’s receptivity and genotype. Next, we investigate how these traits can be decoded from neuronal activity despite multiple sources of variability. We show that individual neurons are limited in their capacity to allow trait classification across multiple sources of variability. However, simple linear classifiers sampling neuronal activity from small neuronal ensembles can provide a substantial improvement over that attained with individual units. Furthermore, we show that some traits are more efficiently detected than others, and that particular secretions may be optimized for conveying information about specific traits. Across all tested stimulus sources, discrimination between strains is more accurate than discrimination of receptivity, and detection of receptivity is more accurate with vaginal secretions than with urine. Our findings highlight the challenges of chemosensory processing of natural stimuli, and suggest that downstream readout stages decode multiple behaviorally relevant traits by sampling information from distinct but overlapping populations of AOB neurons.
AB - For many animals, chemosensation is essential for guiding social behavior. However, because multiple factors can modulate levels of individual chemical cues, deriving information about other individuals via natural chemical stimuli involves considerable challenges. How social information is extracted despite these sources of variability is poorly understood. The vomeronasal system provides an excellent opportunity to study this topic due to its role in detecting socially relevant traits. Here, we focus on two such traits: a female mouse’s strain and reproductive state. In particular, we measure stimulus-induced neuronal activity in the accessory olfactory bulb (AOB) in response to various dilutions of urine, vaginal secretions, and saliva, from estrus and non-estrus female mice from two different strains. We first show that all tested secretions provide information about a female’s receptivity and genotype. Next, we investigate how these traits can be decoded from neuronal activity despite multiple sources of variability. We show that individual neurons are limited in their capacity to allow trait classification across multiple sources of variability. However, simple linear classifiers sampling neuronal activity from small neuronal ensembles can provide a substantial improvement over that attained with individual units. Furthermore, we show that some traits are more efficiently detected than others, and that particular secretions may be optimized for conveying information about specific traits. Across all tested stimulus sources, discrimination between strains is more accurate than discrimination of receptivity, and detection of receptivity is more accurate with vaginal secretions than with urine. Our findings highlight the challenges of chemosensory processing of natural stimuli, and suggest that downstream readout stages decode multiple behaviorally relevant traits by sampling information from distinct but overlapping populations of AOB neurons.
UR - http://www.scopus.com/inward/record.url?scp=84962106674&partnerID=8YFLogxK
U2 - 10.1371/journal.pcbi.1004798
DO - 10.1371/journal.pcbi.1004798
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 26938460
AN - SCOPUS:84962106674
SN - 1553-734X
VL - 12
JO - PLoS Computational Biology
JF - PLoS Computational Biology
IS - 3
M1 - e1004798
ER -