TY - JOUR
T1 - Familial aggregation of red blood cell membrane fatty acid composition
T2 - the Kibbutzim Family Study
AU - Lemaitre, Rozenn N.
AU - Siscovick, David S.
AU - Berry, Elliot M.
AU - Kark, Jeremy D.
AU - Friedlander, Yechiel
PY - 2008/5
Y1 - 2008/5
N2 - The fatty acid composition of membranes plays an important role in health and diseases. Whether genetic factors play a role in interindividual variability in membrane fatty acid levels has received limited attention. Using variance decomposition methods, we estimated the heritability of red blood cell (RBC) membrane fatty acids in an unselected population sample of 80 families (205 male and 212 female subjects) living in kibbutz settlements in Israel. Fatty acid levels were measured by gas chromatography. We estimated that polygenes explained 40% to 70% of the sex- and age-adjusted interindividual variability in all RBC fatty acids: saturated, monounsaturated, and polyunsaturated. The heritability estimates remained very similar after further adjustment for smoking, alcohol consumption, physical activity, lipoproteins, body mass index, waist to hip ratio, education, and religiosity. In bivariate genetic analyses, we observed positive genetic correlations for the fatty acid pairs 20:4n6-22:6n3 and 20:5n3-22:6n3, and negative genetic correlations for the pairs 16:0-20:4n6, 16:0-22:6n3, 18:1n9-20:3n6, 18:2n6-20:4n6, 18:2n6-24:0, and 20:3n6-20:4n6, suggesting that shared effects of the same sets of loci account for 12% to 30% of the additive genetic variance in these pairs of fatty acids. This study suggests a considerable polygenic component for all RBC membrane fatty acids and provides evidence that shared genetic effects account for the additive genetic variance in various fatty acid pairs. Future studies are needed to map the genes underlying the interindividual variation in these inherited phenotypes.
AB - The fatty acid composition of membranes plays an important role in health and diseases. Whether genetic factors play a role in interindividual variability in membrane fatty acid levels has received limited attention. Using variance decomposition methods, we estimated the heritability of red blood cell (RBC) membrane fatty acids in an unselected population sample of 80 families (205 male and 212 female subjects) living in kibbutz settlements in Israel. Fatty acid levels were measured by gas chromatography. We estimated that polygenes explained 40% to 70% of the sex- and age-adjusted interindividual variability in all RBC fatty acids: saturated, monounsaturated, and polyunsaturated. The heritability estimates remained very similar after further adjustment for smoking, alcohol consumption, physical activity, lipoproteins, body mass index, waist to hip ratio, education, and religiosity. In bivariate genetic analyses, we observed positive genetic correlations for the fatty acid pairs 20:4n6-22:6n3 and 20:5n3-22:6n3, and negative genetic correlations for the pairs 16:0-20:4n6, 16:0-22:6n3, 18:1n9-20:3n6, 18:2n6-20:4n6, 18:2n6-24:0, and 20:3n6-20:4n6, suggesting that shared effects of the same sets of loci account for 12% to 30% of the additive genetic variance in these pairs of fatty acids. This study suggests a considerable polygenic component for all RBC membrane fatty acids and provides evidence that shared genetic effects account for the additive genetic variance in various fatty acid pairs. Future studies are needed to map the genes underlying the interindividual variation in these inherited phenotypes.
UR - http://www.scopus.com/inward/record.url?scp=42949100257&partnerID=8YFLogxK
U2 - 10.1016/j.metabol.2007.12.011
DO - 10.1016/j.metabol.2007.12.011
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 18442630
AN - SCOPUS:42949100257
SN - 0026-0495
VL - 57
SP - 662
EP - 668
JO - Metabolism: Clinical and Experimental
JF - Metabolism: Clinical and Experimental
IS - 5
ER -