TY - JOUR
T1 - Fast, Robust, and Laser-Free Universal Entangling Gates for Trapped-Ion Quantum Computing
AU - Nünnerich, Markus
AU - Cohen, Daniel
AU - Barthel, Patrick
AU - Huber, Patrick H.
AU - Niroomand, Dorna
AU - Retzker, Alex
AU - Wunderlich, Christof
N1 - Publisher Copyright:
© and |ψ+
PY - 2025/4
Y1 - 2025/4
N2 - A novel two-qubit entangling gate for trapped-ion quantum processors is proposed theoretically and demonstrated experimentally. During the gate, double-dressed quantum states are created by applying a phase-modulated continuous driving field. The speed of this quantum gate is an order of magnitude higher than that of previously demonstrated rf controlled two-qubit entangling gates in static magnetic field gradients. At the same time, the field driving the gate dynamically decouples the qubits from amplitude and frequency noise, increasing the qubits' coherence time by 3 orders of magnitude. The gate requires only a single continuous rf field per qubit, making it well suited for scaling a quantum processor to large numbers of qubits.
AB - A novel two-qubit entangling gate for trapped-ion quantum processors is proposed theoretically and demonstrated experimentally. During the gate, double-dressed quantum states are created by applying a phase-modulated continuous driving field. The speed of this quantum gate is an order of magnitude higher than that of previously demonstrated rf controlled two-qubit entangling gates in static magnetic field gradients. At the same time, the field driving the gate dynamically decouples the qubits from amplitude and frequency noise, increasing the qubits' coherence time by 3 orders of magnitude. The gate requires only a single continuous rf field per qubit, making it well suited for scaling a quantum processor to large numbers of qubits.
UR - http://www.scopus.com/inward/record.url?scp=105007614333&partnerID=8YFLogxK
U2 - 10.1103/physrevx.15.021079
DO - 10.1103/physrevx.15.021079
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:105007614333
SN - 2160-3308
VL - 15
JO - Physical Review X
JF - Physical Review X
IS - 2
M1 - 021079
ER -