TY - JOUR
T1 - Fault mirrors along carbonate faults
T2 - Formation and destruction during shear experiments
AU - Siman-Tov, Shalev
AU - Aharonov, Einat
AU - Boneh, Yuval
AU - Reches, Ze'ev
N1 - Publisher Copyright:
© 2015 Elsevier B.V.
PY - 2015/11/15
Y1 - 2015/11/15
N2 - Glossy, light reflective surfaces are commonly exposed in carbonate fault-zones. It was suggested that such surfaces, recently termed Fault Mirrors (FMs), form during seismic slip. Ultramicroscopic analyses indicate that FMs are highly smooth and composed of a cohesive thin layer of nano-size grains. We explore here mechanisms of formation and destruction of FMs by shear experiments that were conducted on three types of limestone which were sheared at wide range of slip-velocities of v=0.001-0.63 m/s, and normal stress up to 1.57 MPa. The experiments showed that FMs started to develop as local patches when the slip velocity exceeded a critical value of 0.07 m/s. The area coverage by FM patches increases systematically with increasing velocity, reaching in a few cases ~100% coverage. The measured quasi-steady-state friction coefficient, μss, was inversely correlated with the FM coverage: μss~0.8 for no-FM, at v<0.07 m/s, and μss~0.4 for 50% FM coverage at v~0.6 m/s. Further, in a series of slip-velocity alternation between low and high values, the FMs which formed at a high-velocity stage were destroyed during a subsequent low-velocity stage. Our analyses of the experimental thermal conditions and ultramicroscopy imaging of the FMs suggest that the FMs form by sintering of gouge nanograins during shear. We propose that formation/destruction of FMs in high/low slip-velocity reflects a competition between brittle and ductile processes: FMs form in a ductile mode, and are destroyed by brittle wear. Shear heating during high velocity leads to ductile deformation and sintering so that FM construction rate exceeds brittle FM destruction rate. Based on our results, we suggest that, at least for shallow faults, the presence of extensive FM coverage along natural carbonate faults indicates that the fault segment slipped at seismic velocities and experienced dynamic weakening.
AB - Glossy, light reflective surfaces are commonly exposed in carbonate fault-zones. It was suggested that such surfaces, recently termed Fault Mirrors (FMs), form during seismic slip. Ultramicroscopic analyses indicate that FMs are highly smooth and composed of a cohesive thin layer of nano-size grains. We explore here mechanisms of formation and destruction of FMs by shear experiments that were conducted on three types of limestone which were sheared at wide range of slip-velocities of v=0.001-0.63 m/s, and normal stress up to 1.57 MPa. The experiments showed that FMs started to develop as local patches when the slip velocity exceeded a critical value of 0.07 m/s. The area coverage by FM patches increases systematically with increasing velocity, reaching in a few cases ~100% coverage. The measured quasi-steady-state friction coefficient, μss, was inversely correlated with the FM coverage: μss~0.8 for no-FM, at v<0.07 m/s, and μss~0.4 for 50% FM coverage at v~0.6 m/s. Further, in a series of slip-velocity alternation between low and high values, the FMs which formed at a high-velocity stage were destroyed during a subsequent low-velocity stage. Our analyses of the experimental thermal conditions and ultramicroscopy imaging of the FMs suggest that the FMs form by sintering of gouge nanograins during shear. We propose that formation/destruction of FMs in high/low slip-velocity reflects a competition between brittle and ductile processes: FMs form in a ductile mode, and are destroyed by brittle wear. Shear heating during high velocity leads to ductile deformation and sintering so that FM construction rate exceeds brittle FM destruction rate. Based on our results, we suggest that, at least for shallow faults, the presence of extensive FM coverage along natural carbonate faults indicates that the fault segment slipped at seismic velocities and experienced dynamic weakening.
KW - Carbonate
KW - Fault
KW - Friction
KW - Mirror
KW - Nanograin
KW - Shear
UR - http://www.scopus.com/inward/record.url?scp=84941243368&partnerID=8YFLogxK
U2 - 10.1016/j.epsl.2015.08.031
DO - 10.1016/j.epsl.2015.08.031
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84941243368
SN - 0012-821X
VL - 430
SP - 367
EP - 376
JO - Earth and Planetary Science Letters
JF - Earth and Planetary Science Letters
ER -