Abstract
In the last several years a number of very interesting results were proved about finite metric spaces. Some of this work is motivated by practical considerations: Large data sets (coming e.g. from computational molecular biology, brain research or data mining) can be viewed as large metric spaces that should be analyzed (e.g. correctly clustered). On the other hand, these investigations connect to some classical areas of geometry - the asymptotic theory of finite-dimensional normed spaces and differential geometry. Finally, the metric theory of finite graphs has proved very useful in the study of graphs per se and the design of approximation algorithms for hard computational problems, In this talk I will try to explain some of the results and review some of the emerging new connections and the many fascinating open problems in this area.
Original language | English |
---|---|
Pages | 63 |
Number of pages | 1 |
State | Published - 2002 |
Event | Proceedings of the 18th Annual Symposium on Computational Geometry (SCG'02) - Barcelona, Spain Duration: 5 Jun 2002 → 7 Jun 2002 |
Conference
Conference | Proceedings of the 18th Annual Symposium on Computational Geometry (SCG'02) |
---|---|
Country/Territory | Spain |
City | Barcelona |
Period | 5/06/02 → 7/06/02 |