TY - JOUR
T1 - Flexible transparent conductive coatings by combining self-assembly with sintering of silver nanoparticles performed at room temperature
AU - Layani, Michael
AU - Magdassi, Shlomo
PY - 2011/10/21
Y1 - 2011/10/21
N2 - Transparent conductive coatings are essential for fabrication of a variety of printed electronic devices such as flexible displays and solar cells. We report on a simple method to obtain such coatings by using aqueous dispersions of silver nanoparticles in an evaporative lithography process which is performed directly onto plastic substrates. In essence, a droplet containing silver nanoparticles is placed on top of a metallic mesh, instantaneously spreading over the mesh and the plastic substrate, and after the flow of the dispersion towards the wires of the mesh and drying, a transparent grid composed of the nanoparticles is formed. The silver nanoparticles are tailored to self-sinter upon short exposure to HCl vapors, due to the presence of polyacrylic acid salt on the surface of the particles. Therefore, immediate sintering of the silver nanoparticles in the thin lines of the grid occurs even at room temperature, enabling formation of transparent, flexible conductive grid on heat-sensitive substrates. The process yielded a conductive array having a very low sheet resistance, 9 ± 0.8 Ω/□, and a transparency above 75%. The application of the flexible conductive grid, which can replace conventional and expensive ITO, is demonstrated in an electroluminescent (EL) device.
AB - Transparent conductive coatings are essential for fabrication of a variety of printed electronic devices such as flexible displays and solar cells. We report on a simple method to obtain such coatings by using aqueous dispersions of silver nanoparticles in an evaporative lithography process which is performed directly onto plastic substrates. In essence, a droplet containing silver nanoparticles is placed on top of a metallic mesh, instantaneously spreading over the mesh and the plastic substrate, and after the flow of the dispersion towards the wires of the mesh and drying, a transparent grid composed of the nanoparticles is formed. The silver nanoparticles are tailored to self-sinter upon short exposure to HCl vapors, due to the presence of polyacrylic acid salt on the surface of the particles. Therefore, immediate sintering of the silver nanoparticles in the thin lines of the grid occurs even at room temperature, enabling formation of transparent, flexible conductive grid on heat-sensitive substrates. The process yielded a conductive array having a very low sheet resistance, 9 ± 0.8 Ω/□, and a transparency above 75%. The application of the flexible conductive grid, which can replace conventional and expensive ITO, is demonstrated in an electroluminescent (EL) device.
UR - http://www.scopus.com/inward/record.url?scp=80053318089&partnerID=8YFLogxK
U2 - 10.1039/c1jm13174e
DO - 10.1039/c1jm13174e
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:80053318089
SN - 0959-9428
VL - 21
SP - 15378
EP - 15382
JO - Journal of Materials Chemistry
JF - Journal of Materials Chemistry
IS - 39
ER -