Abstract
Automatic speaker verification systems are increasingly used as the primary means to authenticate costumers. Recently, it has been proposed to train speaker verification systems using end-to-end deep neural models. In this paper, we show that such systems are vulnerable to adversarial example attacks. Adversarial examples are generated by adding a peculiar noise to original speaker examples, in such a way that they are almost indistinguishable, by a human listener. Yet, the generated waveforms, which sound as speaker A can be used to fool such a system by claiming as if the waveforms were uttered by speaker B. We present white-box attacks on a deep end-to-end network that was either trained on YOHO or NTIMIT. We also present two black-box attacks. In the first one, we generate adversarial examples with a system trained on NTIMIT and perform the attack on a system that trained on YOHO. In the second one, we generate the adversarial examples with a system trained using Mel-spectrum features and perform the attack on a system trained using MFCCs. Our results show that one can significantly decrease the accuracy of a target system even when the adversarial examples are generated with different system potentially using different features.
Original language | English |
---|---|
Title of host publication | 2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 1962-1966 |
Number of pages | 5 |
ISBN (Print) | 9781538646588 |
DOIs | |
State | Published - 10 Sep 2018 |
Externally published | Yes |
Event | 2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Calgary, Canada Duration: 15 Apr 2018 → 20 Apr 2018 |
Publication series
Name | ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings |
---|---|
Volume | 2018-April |
ISSN (Print) | 1520-6149 |
Conference
Conference | 2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 |
---|---|
Country/Territory | Canada |
City | Calgary |
Period | 15/04/18 → 20/04/18 |
Bibliographical note
Publisher Copyright:© 2018 IEEE.
Keywords
- Adversarial examples
- Automatic speaker verification