Forecasting regional to global plant migration in response to climate change

Ronald P. Neilson*, Louis F. Pitelka, Allen M. Solomon, Ran Nathan, Guy F. Midgley, Jóse M.V. Fragoso, Heike Lischke, Ken Thompson

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

272 Scopus citations

Abstract

The rate of future climate change is likely to exceed the migration rates of most plant species. The replacement of dominant species by locally rare species may require decades, and extinctions may occur when plant species cannot migrate fast enough to escape the consequences of climate change. Such lags may impair ecosystem services, such as carbon sequestration and clean water production. Thus, to assess global change, simulation of plant migration and local vegetation change by dynamic global vegetation models (DGVMs) is critical, yet fraught with challenges. Global vegetation models cannot simulate all species, necessitating their aggregation into plant functional types (PFTs). Yet most PFTs encompass the full spectrum of migration rates. Migration processes span scales of time and space far beyond what can be confidently simulated in DGVMs. Theories about climate change and migration are limited by inadequate data for key processes at short and long time scales and at small and large spatial scales. These theories must be enhanced to incorporate species-level migration and succession processes into a more comprehensive definition of PFTs.

Original languageEnglish
Pages (from-to)749-759
Number of pages11
JournalBioScience
Volume55
Issue number9
DOIs
StatePublished - Sep 2005

Keywords

  • Climate change
  • Dispersal
  • Dynamic global vegetation models
  • Long-distance dispersal
  • Migration

Fingerprint

Dive into the research topics of 'Forecasting regional to global plant migration in response to climate change'. Together they form a unique fingerprint.

Cite this