Formation of continental flood volcanism - The perspective of setting of melting

Zvi Garfunkel*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

28 Scopus citations

Abstract

Models of continental flood basalt (CFB) formation are evaluated by examining their implications for the setting, mainly temperature and depth, of melting which is assumed to result from adiabatic decompression. Most attractive is the model of melting in upwelling bodies (probably plume heads) rising to the base of the continental lithosphere. This constrains the melting to 120-150 km or deeper (continental lithospheric thickness) and thus the plume potential temperatures to ≥ 300 °C higher than ambient mantle. The primary melts should be hot, MgO-rich, modified during ascent, and assimilate components of the lithosphere, which can provide the continental-like geochemical signature of many CFB. Circulation within the upwellings and presence of eclogite patches also influence magma generation and composition. Dehydration melting when plumes heat the lowermost lithosphere can generate CFB only if the source region contains ca. 15% hydrous minerals beneath the entire area covered by flood volcanics, which is difficult to justify. On the other hand, assimilation of "continental" chemical components from large parts of the lithosphere does not require such extreme metasomatism. Decompression melting under strongly thinned rifted lithosphere requires lower potential temperatures of the rising material and lesser modification of the primary magmas than the plume head model of CFB formation. Available observations do not support the contemporaneity of flood volcanism with rifts having the required sizes and histories, but more information is needed to further test this model. On the other hand, magma production can assist rift initiation and lithospheric rupture, so subsequent thinning can explain the common formation of volcanic rifted margins immediately following CFB emplacement. Ancient LIP should record the same processes as seen in young CFB.

Original languageEnglish
Pages (from-to)49-65
Number of pages17
JournalLithos
Volume100
Issue number1-4
DOIs
StatePublished - Jan 2008

Fingerprint

Dive into the research topics of 'Formation of continental flood volcanism - The perspective of setting of melting'. Together they form a unique fingerprint.

Cite this