TY - JOUR

T1 - Formation of multipartite entanglement using random quantum gates

AU - Most, Yonatan

AU - Shimoni, Yishai

AU - Biham, Ofer

PY - 2007/8/23

Y1 - 2007/8/23

N2 - The formation of multipartite quantum entanglement by repeated operation of one- and two-qubit gates is examined. The resulting entanglement is evaluated using two measures: the average bipartite entanglement and the Groverian measure. A comparison is made between two geometries of the quantum register: a one-dimensional chain in which two-qubit gates apply only locally between nearest neighbors and a nonlocal geometry in which such gates may apply between any pair of qubits. More specifically, we use a combination of random single-qubit rotations and a fixed two-qubit gate such as the controlled-phase gate. It is found that in the nonlocal geometry the entanglement is generated at a higher rate. In both geometries, the Groverian measure converges to its asymptotic value more slowly than the average bipartite entanglement. These results are expected to have implications on different proposed geometries of future quantum computers with local and nonlocal interactions between the qubits.

AB - The formation of multipartite quantum entanglement by repeated operation of one- and two-qubit gates is examined. The resulting entanglement is evaluated using two measures: the average bipartite entanglement and the Groverian measure. A comparison is made between two geometries of the quantum register: a one-dimensional chain in which two-qubit gates apply only locally between nearest neighbors and a nonlocal geometry in which such gates may apply between any pair of qubits. More specifically, we use a combination of random single-qubit rotations and a fixed two-qubit gate such as the controlled-phase gate. It is found that in the nonlocal geometry the entanglement is generated at a higher rate. In both geometries, the Groverian measure converges to its asymptotic value more slowly than the average bipartite entanglement. These results are expected to have implications on different proposed geometries of future quantum computers with local and nonlocal interactions between the qubits.

UR - http://www.scopus.com/inward/record.url?scp=34548233709&partnerID=8YFLogxK

U2 - 10.1103/PhysRevA.76.022328

DO - 10.1103/PhysRevA.76.022328

M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???

AN - SCOPUS:34548233709

SN - 1050-2947

VL - 76

JO - Physical Review A - Atomic, Molecular, and Optical Physics

JF - Physical Review A - Atomic, Molecular, and Optical Physics

IS - 2

M1 - 022328

ER -