Abstract
Template-free fabrication of non-spherical polymeric nanoparticles is desirable for various applications, but has had limited success owing to thermodynamic favorability of sphere formation. Herein we present a simple way to prepare cubic nanoparticles of block copolymers by self-assembly from aqueous solutions at room temperature. Nanocubes with edges of 40–200 nm are formed spontaneously on different surfaces upon water evaporation from micellar solutions of triblock copolymers containing a central poly(ethylene oxide) block and terminal trimethylene carbonate/dithiolane blocks. These polymers self-assemble into 28±5 nm micelles in water. Upon drying, micelle aggregation and a kinetically controlled crystallization of central blocks evidently induce solid cubic particle formation. An approach for preserving the structures of these cubes in water by thiol- or photo-induced crosslinking was developed. The ability to solubilize a model hydrophobic drug, curcumin, was also explored.
Original language | English |
---|---|
Pages (from-to) | 16357-16362 |
Number of pages | 6 |
Journal | Angewandte Chemie - International Edition |
Volume | 56 |
Issue number | 51 |
DOIs | |
State | Published - 18 Dec 2017 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Keywords
- dithiolane crosslinking
- micelle aggregation
- nanocubes
- self-assembly
- triblock copolymers