TY - JOUR
T1 - From molecule to oblivion
T2 - dedicated brain circuitry underlies anesthetic loss of consciousness permitting pain-free surgery
AU - Baron, Mark
AU - Devor, Marshall
N1 - Publisher Copyright:
Copyright © 2023 Baron and Devor.
PY - 2023
Y1 - 2023
N2 - The canonical view of how general anesthetics induce loss-of-consciousness (LOC) permitting pain-free surgery posits that anesthetic molecules, distributed throughout the CNS, suppress neural activity globally to levels at which the cerebral cortex can no longer sustain conscious experience. We support an alternative view that LOC, in the context of GABAergic anesthesia at least, results from anesthetic exposure of a small number of neurons in a focal brainstem nucleus, the mesopontine tegmental anesthesia area (MPTA). The various sub-components of anesthesia, in turn, are effected in distant locations, driven by dedicated axonal pathways. This proposal is based on the observations that microinjection of infinitesimal amounts of GABAergic agents into the MPTA, and only there, rapidly induces LOC, and that lesioning the MPTA renders animals relatively insensitive to these agents delivered systemically. Recently, using chemogenetics, we identified a subpopulation of MPTA “effector-neurons” which, when excited (not inhibited), induce anesthesia. These neurons contribute to well-defined ascending and descending axonal pathways each of which accesses a target region associated with a key anesthetic endpoint: atonia, anti-nociception, amnesia and LOC (by electroencephalographic criteria). Interestingly, the effector-neurons do not themselves express GABAA-receptors. Rather, the target receptors reside on a separate sub-population of presumed inhibitory interneurons. These are thought to excite the effectors by disinhibition, thus triggering anesthetic LOC.
AB - The canonical view of how general anesthetics induce loss-of-consciousness (LOC) permitting pain-free surgery posits that anesthetic molecules, distributed throughout the CNS, suppress neural activity globally to levels at which the cerebral cortex can no longer sustain conscious experience. We support an alternative view that LOC, in the context of GABAergic anesthesia at least, results from anesthetic exposure of a small number of neurons in a focal brainstem nucleus, the mesopontine tegmental anesthesia area (MPTA). The various sub-components of anesthesia, in turn, are effected in distant locations, driven by dedicated axonal pathways. This proposal is based on the observations that microinjection of infinitesimal amounts of GABAergic agents into the MPTA, and only there, rapidly induces LOC, and that lesioning the MPTA renders animals relatively insensitive to these agents delivered systemically. Recently, using chemogenetics, we identified a subpopulation of MPTA “effector-neurons” which, when excited (not inhibited), induce anesthesia. These neurons contribute to well-defined ascending and descending axonal pathways each of which accesses a target region associated with a key anesthetic endpoint: atonia, anti-nociception, amnesia and LOC (by electroencephalographic criteria). Interestingly, the effector-neurons do not themselves express GABAA-receptors. Rather, the target receptors reside on a separate sub-population of presumed inhibitory interneurons. These are thought to excite the effectors by disinhibition, thus triggering anesthetic LOC.
KW - anesthesia
KW - consciousness
KW - loss-of-consciousness
KW - mesopontine tegmentum
KW - MPTA
UR - http://www.scopus.com/inward/record.url?scp=85161448911&partnerID=8YFLogxK
U2 - 10.3389/fnmol.2023.1197304
DO - 10.3389/fnmol.2023.1197304
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.systematicreview???
AN - SCOPUS:85161448911
SN - 1662-5099
VL - 16
JO - Frontiers in Molecular Neuroscience
JF - Frontiers in Molecular Neuroscience
M1 - 1197304
ER -