From selective to adaptive security in functional encryption

Prabhanjan Ananth, Zvika Brakerski, Gil Segev*, Vinod Vaikuntanathan

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

89 Scopus citations


In a functional encryption (FE) scheme, the owner of the secret key can generate restricted decryption keys that allow users to learn specific functions of the encrypted messages and nothing else. In many known constructions of FE schemes, security is guaranteed only for messages that are fixed ahead of time (i.e., before the adversary even interacts with the system). This so-called selective security is too restrictive for many realistic applications. Achieving adaptive security (also called full security), where security is guaranteed even for messages that are adaptively chosen at any point in time, seems significantly more challenging. The handful of known adaptively-secure schemes are based on specifically tailored techniques that rely on strong assumptions (such as obfuscation or multilinear maps assumptions) can be transformed into an adaptively-secure one without introducing any additional assumptions. We present a black-box transformation, for both public-key and private-key schemes, making novel use of hybrid encryption, a classical technique that was originally introduced for improving the efficiency of encryption schemes. We adapt the hybrid encryption approach to the setting of functional encryption via a technique for embedding a “hidden execution thread” in the decryption keys of the underlying scheme, which will only be activated within the proof of security of the resulting scheme. As an additional application of this technique, we show how to construct functional encryption schemes for arbitrary circuits starting from ones for shallow circuits (NC1 or even TC0).

Original languageAmerican English
Title of host publicationAdvances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Proceedings
EditorsMatthew Robshaw, Rosario Gennaro
PublisherSpringer Verlag
Number of pages21
ISBN (Print)9783662479995
StatePublished - 2015
Event35th Annual Cryptology Conference, CRYPTO 2015 - Santa Barbara, United States
Duration: 16 Aug 201520 Aug 2015

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349


Conference35th Annual Cryptology Conference, CRYPTO 2015
Country/TerritoryUnited States
CitySanta Barbara

Bibliographical note

Publisher Copyright:
© International Association for Cryptologic Research 2015.


  • Adaptive security
  • Functional encryption
  • Generic constructions


Dive into the research topics of 'From selective to adaptive security in functional encryption'. Together they form a unique fingerprint.

Cite this