Abstract
Organic-inorganic halide perovskite has excellent properties to function as light harvesters in solar cells due to the possibility to tune its optical properties and to use it as thin film absorber, at a few hundred-nanometer thicknesses. Herein, we demonstrate the fabrication of perovskite solar cells with controlled transparency, by the mesh assisted deposition process. Sequential fabrication of perovskite was performed in air, wherein a PbI2 grid was formed in the first step, and in the second step, the grid reacted selectively with methylammoniumiodide, resulting in a perovskite grid pattern. The best cells were obtained with a photoanode composed of mesoporous TiO2 with Al2O3 nanoparticles. The resulting semi-transparent perovskite solar cells, including a semi-transparent contact composed of MoO3/Au/MoO3 yielded a power conversion efficiency of 5.5% with an average transparency of 26% and efficiency of 8% for cells fabricated with a gold contact.
Original language | American English |
---|---|
Pages (from-to) | 2120-2127 |
Number of pages | 8 |
Journal | Sustainable Energy and Fuels |
Volume | 1 |
Issue number | 10 |
DOIs | |
State | Published - 2017 |
Bibliographical note
Funding Information:We would like to thank the support by the Israel ministry of science and technology and the Singapore Research Foundation under the Campus for Research and Technological Enterprise (CREATE): NTU-HUJ Nanomaterials for energy and energy-water nexus program.
Publisher Copyright:
© The Royal Society of Chemistry.