TY - JOUR
T1 - Fusogenic properties of reconstituted hybrid vesicles containing Sendai and influenza envelope glycoproteins
T2 - fluorescence dequenching and fluorescence microscopy studies
AU - Lapidot, Moshe
AU - Loyter, Abraham
PY - 1989/4/28
Y1 - 1989/4/28
N2 - Co-reconstitution of influenza and Sendai virus phospholipids and glycoproteins resulted in the formation of membrane vesicles containing the envelope glycoproteins from both viruses within the same membrane. Reconstituted influenza-Sendai hybrids (RISH) were able to lyse human erythrocytes and fuse with their membranes or with living cultured cells at pH 5.0 as well as at pH 7.4, thus exhibiting the fusogenic properties of both viruses. This was also inferred from experiments showing that the fusogenic activity of RISH was inhibited by anti-influenza as well as by anti-Sendai virus antibodies. Fusion of FISH and of reconstituted influenza (RIVE) or reconstituted Sendai virus envelopes (RSVE) with recipient membranes was determined by the use of fluorescently labeled envelopes and fluorescence dequenching methods. Observations with the fluorescence microscope were used to study localization of fused reconstituted envelopes within living cells. Incubation of RISH and RSVE with living cells at pH 7.4 resulted in the appearance of fluorescence rings around the cell plasma membranes and of intracellular distinct fluorescent spots indicating fusion with cell plasma membranes and with membranes of endocytic vesicles, respectively. The fluorescence microscopy observations clearly showed that RIVE failed to fuse, at pH 7.4, with cultured cell plasma membranes, but fused with membranes of endocytic vesicles.
AB - Co-reconstitution of influenza and Sendai virus phospholipids and glycoproteins resulted in the formation of membrane vesicles containing the envelope glycoproteins from both viruses within the same membrane. Reconstituted influenza-Sendai hybrids (RISH) were able to lyse human erythrocytes and fuse with their membranes or with living cultured cells at pH 5.0 as well as at pH 7.4, thus exhibiting the fusogenic properties of both viruses. This was also inferred from experiments showing that the fusogenic activity of RISH was inhibited by anti-influenza as well as by anti-Sendai virus antibodies. Fusion of FISH and of reconstituted influenza (RIVE) or reconstituted Sendai virus envelopes (RSVE) with recipient membranes was determined by the use of fluorescently labeled envelopes and fluorescence dequenching methods. Observations with the fluorescence microscope were used to study localization of fused reconstituted envelopes within living cells. Incubation of RISH and RSVE with living cells at pH 7.4 resulted in the appearance of fluorescence rings around the cell plasma membranes and of intracellular distinct fluorescent spots indicating fusion with cell plasma membranes and with membranes of endocytic vesicles, respectively. The fluorescence microscopy observations clearly showed that RIVE failed to fuse, at pH 7.4, with cultured cell plasma membranes, but fused with membranes of endocytic vesicles.
KW - (Influenza virus)
KW - (Sendai virus)
KW - Envelope glycoprotein
KW - Glycoprotein
KW - Phospholipid
KW - Reconstituted hybrid vesicle
UR - http://www.scopus.com/inward/record.url?scp=0024330174&partnerID=8YFLogxK
U2 - 10.1016/0005-2736(89)90314-3
DO - 10.1016/0005-2736(89)90314-3
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 2540837
AN - SCOPUS:0024330174
SN - 0005-2736
VL - 980
SP - 281
EP - 290
JO - Biochimica et Biophysica Acta - Biomembranes
JF - Biochimica et Biophysica Acta - Biomembranes
IS - 3
ER -