Gauss law, minimal coupling and fermionic PEPS for lattice gauge theories

Patrick Emonts, Erez Zohar

Research output: Contribution to journalReview articlepeer-review

13 Scopus citations


In these lecture notes, we review some recent works on Hamiltonian lattice gauge theories, that involve, in particular, tensor network methods. The results reviewed here are tailored together in a slightly different way from the one used in the contexts where they were first introduced. We look at the Gauss law from two different points of view: for the gauge field, it is a differential equation, while from the matter point of view, on the other hand, it is a simple, explicit algebraic equation. We will review and discuss what these two points of view allow and do not allow us to do, in terms of unitarily gauging a pure-matter theory and eliminating the matter from a gauge theory, and relate that to the construction of PEPS (Projected Entangled Pair States) for lattice gauge theories.

Original languageAmerican English
JournalSciPost Physics Lecture Notes
Issue number12
StatePublished - 17 Jan 2020

Bibliographical note

Publisher Copyright:
Copyright P. Emonts and E. Zohar. This work is licensed under the Creative Commons Attribution 4.0 International License.


Dive into the research topics of 'Gauss law, minimal coupling and fermionic PEPS for lattice gauge theories'. Together they form a unique fingerprint.

Cite this