Genetic adaptation of Streptococcus mutans during biofilm formation on different types of surfaces

Moshe Shemesh, Avshalom Tam, Reuven Aharoni, Doron Steinberg*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

43 Scopus citations


Background. Adhesion and successful colonization of bacteria onto solid surfaces play a key role in biofilm formation. The initial adhesion and the colonization of bacteria may differ between the various types of surfaces found in oral cavity. Therefore, it is conceivable that diverse biofilms are developed on those various surfaces. The aim of the study was to investigate the molecular modifications occurring during in vitro biofilm development of Streptococcus mutans UA159 on several different dental surfaces. Results. Growth analysis of the immobilized bacterial populations generated on the different surfaces shows that the bacteria constructed a more confluent and thick biofilms on a hydroxyapatite surface compared to the other tested surfaces. Using DNA-microarray technology we identified the differentially expressed genes of S. mutans, reflecting the physiological state of biofilms formed on the different biomaterials tested. Eight selected genes were further analyzed by real time RT-PCR. To further determine the impact of the tested material surfaces on the physiology of the bacteria, we tested the secretion of AI-2 signal by S. mutans embedded on those biofilms. Comparative transcriptome analyses indicated on changes in the S. mutans genome in biofilms formed onto different types of surfaces and enabled us to identify genes most differentially expressed on those surfaces. In addition, the levels of autoinducer-2 in biofilms from the various tested surfaces were different. Conclusions. Our results demonstrate that gene expression of S. mutans differs in biofilms formed on tested surfaces, which manifest the physiological state of bacteria influenced by the type of surface material they accumulate onto. Moreover, the stressful circumstances of adjustment to the surface may persist in the bacteria enhancing intercellular signaling and surface dependent biofilm formation.

Original languageAmerican English
Article number51
JournalBMC Microbiology
StatePublished - 2010

Bibliographical note

Funding Information:
Microarrays were provided by the NIDCR through the PFGRC at TIGR. This study was partially supported by the Norton-Ross Foundation of IADR. We are grateful to Dr. Miriam Kott-Gutkowski for her excellent technical assistance.


Dive into the research topics of 'Genetic adaptation of Streptococcus mutans during biofilm formation on different types of surfaces'. Together they form a unique fingerprint.

Cite this