TY - JOUR
T1 - Genetic analysis of the role of the reprogramming gene LIN-28 in human embryonic stem cells
AU - Dark, Henia
AU - Benvenisty, Nissim
PY - 2009/2
Y1 - 2009/2
N2 - LIN-28 is a gene recently shown to be involved in the conversion of somatic cells to induced pluripotent stem cells. We have previously shown that LIN-28 is highly expressed in human embryonic stem cells (HESCs); however, its role in these cells has not been investigated. We now show that, like OCT4, SOX2, and NANOG, LIN-28 is downregulated during differentiation of HESCs into embryoid bodies. In addition, we investigate the role of LIN-28 in HESCs by manipulation of its expression levels. LIN-28 overexpression impairs the ability of cells to grow at clonal densities, due to increased differentiation and decreased cell division. Analysis of cell differentiation under these conditions revealed that it is mostly towards the extraembryonic endoderm lineage. Moreover, we show that, during early mouse development, high levels of Lin-28 are also observed in the extraembryonic endoderm, and therefore it seems that, both in vitro and in vivo, high levels of LIN-28 may specify an extraembryonic endoderm fate. However, LIN-28 seems dispensable for self-renewal of HESCs; its downregulation neither impairs HESC proliferation nor leads to their differentiation. Thus, LIN-28 does not seem to be involved in the self-renewal of HESCs, but rather seems to be involved in their decision to switch from self-renewal to differentiation.
AB - LIN-28 is a gene recently shown to be involved in the conversion of somatic cells to induced pluripotent stem cells. We have previously shown that LIN-28 is highly expressed in human embryonic stem cells (HESCs); however, its role in these cells has not been investigated. We now show that, like OCT4, SOX2, and NANOG, LIN-28 is downregulated during differentiation of HESCs into embryoid bodies. In addition, we investigate the role of LIN-28 in HESCs by manipulation of its expression levels. LIN-28 overexpression impairs the ability of cells to grow at clonal densities, due to increased differentiation and decreased cell division. Analysis of cell differentiation under these conditions revealed that it is mostly towards the extraembryonic endoderm lineage. Moreover, we show that, during early mouse development, high levels of Lin-28 are also observed in the extraembryonic endoderm, and therefore it seems that, both in vitro and in vivo, high levels of LIN-28 may specify an extraembryonic endoderm fate. However, LIN-28 seems dispensable for self-renewal of HESCs; its downregulation neither impairs HESC proliferation nor leads to their differentiation. Thus, LIN-28 does not seem to be involved in the self-renewal of HESCs, but rather seems to be involved in their decision to switch from self-renewal to differentiation.
KW - Cell differentiation
KW - Embryonic stem cells
KW - LIN-28 protein
UR - http://www.scopus.com/inward/record.url?scp=62549132535&partnerID=8YFLogxK
U2 - 10.1634/stemcells.2008-0720
DO - 10.1634/stemcells.2008-0720
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 19038789
AN - SCOPUS:62549132535
SN - 1066-5099
VL - 27
SP - 352
EP - 362
JO - Stem Cells
JF - Stem Cells
IS - 2
ER -