Abstract
Background: Elevated low-frequency activity (4–12 Hz) within the globus pallidus internus (GPi) has been consistently associated with dystonia. However, the impacts of the genetic etiology of dystonia on low-frequency GPi activity remain unclear; yet it holds importance for adaptive deep brain stimulation (DBS) treatment. Methods: We compared the properties of GPi electrophysiology acquired from 70 microelectrode recordings (MER) trajectories of DYT-GNAL, DYT-KMT2B, DYT-SGCE, DYT-THAP1, DYT-TOR1A, DYT-VPS16, and idiopathic dystonia (iDYT) patients who underwent GPi-DBS surgery across standard frequency bands. Results: DYT-SGCE patients exhibited significantly lower alpha band activity (2.97%) compared to iDYT (4.44%, p = 0.006) and DYT-THAP1 (4.51%, p = 0.011). Additionally, theta band power was also significantly reduced in DYT-SGCE (4.42%) compared to iDYT and DYT-THAP1 (7.91% and 7.00%, p < 0.05). Instead, the genetic etiology of dystonia did not affect the spatial characteristics of GPi electrophysiology along MER trajectories. Conclusion: Considering the genetic etiology of dystonia in closed-loop DBS treatments and utilizing theta and alpha activity for GPi stimulation may optimize clinical outcomes. MER-based DBS lead placement can proceed independently of the underlying genetic cause.
Original language | English |
---|---|
Article number | e70098 |
Journal | European Journal of Neurology |
Volume | 32 |
Issue number | 3 |
DOIs | |
State | Published - Mar 2025 |
Bibliographical note
Publisher Copyright:© 2025 The Author(s). European Journal of Neurology published by John Wiley & Sons Ltd on behalf of European Academy of Neurology.
Keywords
- alpha oscillations
- deep brain stimulation
- dystonia
- electrophysiology
- genetics