TY - JOUR
T1 - Genomic characterization of antimicrobial resistance, virulence, and phylogeny of the genus ochrobactrum
AU - Yagel, Yael
AU - Sestito, Stephanie
AU - Motro, Yair
AU - Shnaiderman-Torban, Anat
AU - Khalfin, Boris
AU - Sagi, Orly
AU - Navon-Venezia, Shiri
AU - Steinman, Amir
AU - Moran-Gilad, Jacob
N1 - Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020/4
Y1 - 2020/4
N2 - Ochrobactrum is a ubiquitous Gram-negative microorganism, mostly found in the environment, which can cause opportunistic infections in humans. It is almost uniformly resistant to penicillins and cephalosporins through an AmpC-like β-lactamase enzyme class (OCH). We studied 130 assembled genomes, of which 5 were animal-derived isolates recovered in Israel, and 125 publicly available genomes. Our analysis focused on antimicrobial resistance (AMR) genes, virulence genes, and whole-genome phylogeny. We found that 76% of Ochrobactrum genomes harbored a blaOCH β-lactamase gene variant, while 7% harbored another AmpC-like gene. No virulence genes other than lipopolysaccharide-associated genes were found. Core genome multilocus sequence typing clustered most samples to known species, but neither geographical clustering nor isolation source clustering were evident. When analyzing the distribution of different blaOCH variants as well as of the blaOCH-deficient samples, a clear phylogenomic clustering was apparent for specific species. The current analysis of the largest collection to date of Ochrobactrum genomes sheds light on the resistome, virulome, phylogeny, and species classification of this increasingly reported human pathogen. Our findings also suggest that Ochrobactrum deserves further characterization to underpin its evolution, taxonomy, and antimicrobial resistance.
AB - Ochrobactrum is a ubiquitous Gram-negative microorganism, mostly found in the environment, which can cause opportunistic infections in humans. It is almost uniformly resistant to penicillins and cephalosporins through an AmpC-like β-lactamase enzyme class (OCH). We studied 130 assembled genomes, of which 5 were animal-derived isolates recovered in Israel, and 125 publicly available genomes. Our analysis focused on antimicrobial resistance (AMR) genes, virulence genes, and whole-genome phylogeny. We found that 76% of Ochrobactrum genomes harbored a blaOCH β-lactamase gene variant, while 7% harbored another AmpC-like gene. No virulence genes other than lipopolysaccharide-associated genes were found. Core genome multilocus sequence typing clustered most samples to known species, but neither geographical clustering nor isolation source clustering were evident. When analyzing the distribution of different blaOCH variants as well as of the blaOCH-deficient samples, a clear phylogenomic clustering was apparent for specific species. The current analysis of the largest collection to date of Ochrobactrum genomes sheds light on the resistome, virulome, phylogeny, and species classification of this increasingly reported human pathogen. Our findings also suggest that Ochrobactrum deserves further characterization to underpin its evolution, taxonomy, and antimicrobial resistance.
KW - Antimicrobial resistance
KW - Lactamase
KW - Phylogeny
KW - Veterinary
KW - Whole-genome sequencing
UR - http://www.scopus.com/inward/record.url?scp=85083299980&partnerID=8YFLogxK
U2 - 10.3390/antibiotics9040177
DO - 10.3390/antibiotics9040177
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85083299980
SN - 2079-6382
VL - 9
JO - Antibiotics
JF - Antibiotics
IS - 4
M1 - 177
ER -