## Abstract

We study large deviations of the time-averaged size of stochastic populations described by a continuous-time Markov jump process. When the expected population size N in the steady state is large, the large deviation function (LDF) of the time-averaged population size can be evaluated by using a Wentzel-Kramers-Brillouin (WKB) method, applied directly to the master equation for the Markov process. For a class of models that we identify, the direct WKB method predicts a giant disparity between the probabilities of observing an unusually small and an unusually large values of the time-averaged population size. The disparity results from a qualitative change in the "optimal" trajectory of the underlying classical mechanics problem. The direct WKB method also predicts, in the limit of N→∞, a singularity of the LDF, which can be interpreted as a second-order dynamical phase transition. The transition is smoothed at finite N, but the giant disparity remains. The smoothing effect is captured by the van-Kampen system size expansion of the exact master equation near the attracting fixed point of the underlying deterministic model. We describe the giant disparity at finite N by developing a different variant of WKB method, which is applied in conjunction with the Donsker-Varadhan large-deviation formalism and involves subleading-order calculations in 1/N.

Original language | American English |
---|---|

Article number | 052105 |

Journal | Physical Review E |

Volume | 99 |

Issue number | 5 |

DOIs | |

State | Published - 6 May 2019 |

### Bibliographical note

Funding Information:We are grateful to Hugo Touchette and Tal Agranov for useful discussions and acknowledge support from the Israel Science Foundation (Grant No. 807/16). N.R.S. was supported by the Clore Israel Foundation.

Publisher Copyright:

© 2019 American Physical Society.