Global and Regional Cardiovascular Mortality Attributable to Nonoptimal Temperatures Over Time

MCC Collaborators∗

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Background: The association between nonoptimal temperatures and cardiovascular mortality risk is recognized. However, a comprehensive global assessment of this burden is lacking. Objectives: The goal of this study was to assess global cardiovascular mortality burden attributable to nonoptimal temperatures and investigate spatiotemporal trends. Methods: Using daily cardiovascular deaths and temperature data from 32 countries, a 3-stage analytical approach was applied. First, location-specific temperature–mortality associations were estimated, considering nonlinearity and delayed effects. Second, a multivariate meta-regression model was developed between location-specific effect estimates and 5 meta-predictors. Third, cardiovascular deaths associated with nonoptimal, cold, and hot temperatures for each global grid (55 km × 55 km resolution) were estimated, and temporal trends from 2000 to 2019 were explored. Results: Globally, 1,801,513 (95% empirical CI: 1,526,632-2,202,831) annual cardiovascular deaths were associated with nonoptimal temperatures, constituting 8.86% (95% empirical CI: 7.51%-12.32%) of total cardiovascular mortality corresponding to 26 deaths per 100,000 population. Cold-related deaths accounted for 8.20% (95% empirical CI: 6.74%-11.57%), whereas heat-related deaths accounted for 0.66% (95% empirical CI: 0.49%-0.98%). The mortality burden varied significantly across regions, with the highest excess mortality rates observed in Central Asia and Eastern Europe. From 2000 to 2019, cold-related excess death ratios decreased, while heat-related ratios increased, resulting in an overall decline in temperature-related deaths. Southeastern Asia, Sub-Saharan Africa, and Oceania observed the greatest reduction, while Southern Asia experienced an increase. The Americas and several regions in Asia and Europe displayed fluctuating temporal patterns. Conclusions: Nonoptimal temperatures substantially contribute to cardiovascular mortality, with heterogeneous spatiotemporal patterns. Effective mitigation and adaptation strategies are crucial, especially given the increasing heat-related cardiovascular deaths amid climate change.

Original languageAmerican English
Pages (from-to)2276-2287
Number of pages12
JournalJournal of the American College of Cardiology
Volume83
Issue number23
DOIs
StatePublished - 11 Jun 2024

Bibliographical note

Publisher Copyright:
© 2024 American College of Cardiology Foundation

Keywords

  • cardiovascular death
  • death ratio
  • excess death
  • Global Burden of Disease
  • nonoptimal temperatures

Cite this