Global estimates for the Schrödinger equation

Matania Ben-Artzi*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Let u = u(x, t) be a solution to the IVP for the Schrödinger equation iu1 = (-Δ + V(x))u ≡ Hu, u(x, 0) = u0(x) ε{lunate} PacL2(Rn) (Pac is the projection on the absolutely continuous subspace of H). Assume that for some ε > 0 the multiplication operator (1+|x|)1+iV(x):H1-ε(Rn) → L2(Rn) is bounded. Then u(x, t) = u1(x, t) + u2(x, t) where, for every s > 1 2, ∫ R ∫ Rn (1 + |x|2)-s|(1+H) 1 4u1(x,t)|2 dxdt ≤ C {norm of matrix}u0{norm of matrix}L2(Rn)2, and for every integer j, sup{norm of matrix}(I + H)ju2(·, t){norm of matrix}L2(Rn) ≤ Cj {norm of matrix} U0{norm of matrix}L2(Rn) tε{lunate}R.

Original languageEnglish
Pages (from-to)362-368
Number of pages7
JournalJournal of Functional Analysis
Volume107
Issue number2
DOIs
StatePublished - 1 Aug 1992

Fingerprint

Dive into the research topics of 'Global estimates for the Schrödinger equation'. Together they form a unique fingerprint.

Cite this