Glucose oxidase converted into a general sugar-oxidase

Yael Baruch-Shpigler, David Avnir*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Entrapment of glucose oxidase (GOx) within metallic gold converts this widely used enzyme into a general saccharide oxidase. The following sugar molecules were oxidized by the entrapped enzyme (in addition to d-glucose): fructose, xylose, l-glucose, glucose-6-phosphate, sucrose, lactose, methylglucoside, and the tri-saccharide raffinose. With the exception of raffinose, none of these sugars have a natural specific oxidase. The origin of this generalization of activity is attributed to the strong protein-gold 3D interactions and to the strong interactions of the co-entrapped CTAB with both the gold, and the protein. It is proposed that these interactions induce conformational changes in the channel leading to the active site, which is located at the interface between the two units of the dimeric GOx protein. The observations are compatible with affecting the specific conformation change of pulling apart and opening this gate-keeper, rendering the active site accessible to a variety of substrates. The entrapment methodology was also found to increase the thermal stability of GOx up to 100 °C and to allow its convenient reuse, two features of practical importance.

Original languageEnglish
Article number10716
JournalScientific Reports
Volume12
Issue number1
DOIs
StatePublished - Dec 2022

Bibliographical note

Publisher Copyright:
© 2022, The Author(s).

Fingerprint

Dive into the research topics of 'Glucose oxidase converted into a general sugar-oxidase'. Together they form a unique fingerprint.

Cite this