Graph-based automatic detection and classification of lesion changes in pairs of CT studies for oncology follow-up

Shalom Rochman, Adi Szeskin, Richard Lederman, Jacob Sosna, Leo Joskowicz*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Purpose: Radiological follow-up of oncology patients requires the quantitative analysis of lesion changes in longitudinal imaging studies, which is time-consuming, requires expertise, and is subject to variability. This paper presents a comprehensive graph-based method for the automatic detection and classification of lesion changes in current and prior CT scans. Methods: The inputs are the current and prior CT scans and their organ and lesion segmentations. Classification of lesion changes is formalized as bipartite graph matching where lesion pairings are computed by adaptive overlap-based lesion matching. Six types of lesion changes are computed by connected components analysis. The method was evaluated on 208 pairs of lung and liver CT scans from 57 patients with 4600 lesions, 1713 lesion matchings and 2887 lesion changes. Ground-truth lesion segmentations, lesion matchings and lesion changes were created by an expert radiologist. Results: Our method yields a lesion matching rate accuracy of 99.7% (394/395) and 95.0% (1252/1318) for the lung and liver datasets. Precision and recall are > 0.99 and 0.94 and 0.95 (respectively) for the detection of lesion changes. The analysis of lesion changes helped the radiologist detect 48 missed lesions and 8 spurious lesions in the input ground-truth lesion datasets. Conclusion: The classification of lesion classification provides the clinician with a readily accessible and intuitive identification and classification of the lesion changes and their patterns in support of clinical decision making. Comprehensive automatic computer-aided lesion matching and analysis of lesion changes may improve quantitative follow-up and evaluation of disease status, assessment of treatment efficacy and response to therapy.

Original languageEnglish
Pages (from-to)241-251
Number of pages11
JournalInternational journal of computer assisted radiology and surgery
Volume19
Issue number2
DOIs
StatePublished - Feb 2024

Bibliographical note

Publisher Copyright:
© CARS 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Keywords

  • Analysis of connected components
  • Analysis of lesion changes
  • Lesion matching
  • Longitudinal CT studies

Fingerprint

Dive into the research topics of 'Graph-based automatic detection and classification of lesion changes in pairs of CT studies for oncology follow-up'. Together they form a unique fingerprint.

Cite this