Abstract
This paper investigates graph-based encoders for the unifilar finite-state channel (FSC) with feedback. A recent paper introduced the Q-graph as a tool for the recursive quantization of channel outputs on a directed graph. The Q- graph approach yielded single-letter lower and upper bounds on the feedback capacity of unifilar FSCs, termed here Q-LB and Q-UB, respectively. The current paper provides two computable optimization problems for the Q-LB and the Q-UB. The first, for the Q-LB, aims to find the graph-based encoder with the highest achievable rate. Specifically, for a structured cooperation between the encoder and the decoder, that is given by a particular Q-graph, the optimization problem maximizes the Q-LB over all input distributions. The resultant graph-based encoder from the optimization problem has a corresponding posterior matching scheme that achieves the Q-LB. The second optimization problem provides a formulation of the Q-UB as a convex optimization problem. Numerical results of the Q-LB and the Q-UB are presented for the Ising channel and a simplified version of a fading channel. The numerical results are then translated into analytical expressions for graph-based encoders and their achievable rates.
Original language | English |
---|---|
Title of host publication | 2018 IEEE International Symposium on Information Theory, ISIT 2018 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 1121-1125 |
Number of pages | 5 |
ISBN (Print) | 9781538647806 |
DOIs | |
State | Published - 15 Aug 2018 |
Externally published | Yes |
Event | 2018 IEEE International Symposium on Information Theory, ISIT 2018 - Vail, United States Duration: 17 Jun 2018 → 22 Jun 2018 |
Publication series
Name | IEEE International Symposium on Information Theory - Proceedings |
---|---|
Volume | 2018-June |
ISSN (Print) | 2157-8095 |
Conference
Conference | 2018 IEEE International Symposium on Information Theory, ISIT 2018 |
---|---|
Country/Territory | United States |
City | Vail |
Period | 17/06/18 → 22/06/18 |
Bibliographical note
Publisher Copyright:© 2018 IEEE.