TY - JOUR
T1 - GRB Afterglow Parameters in the Era of TeV Observations
T2 - The Case of GRB 190114C
AU - Derishev, Evgeny
AU - Piran, Tsvi
N1 - Publisher Copyright:
© 2021. The American Astronomical Society. All rights reserved.
PY - 2021/12/20
Y1 - 2021/12/20
N2 - The afterglow of GRB 190114C has been observed at 60-1200 s after the burst in the sub-TeV range by the MAGIC Cerenkov telescope. The simultaneous observations in the X-ray range, which is presumed to be of synchrotron origin, and in the sub-TeV range, where the emission is presumed to be inverse Compton, provide new stringent constraints on the conditions within the emitting regions and their evolution in time. While the additional data contain a lot of new information, it turns out that fitting both the X-ray and the TeV emission is much more complicated than what was originally anticipated. We find that optical flux measurements provide important complementary information that, in combination with TeV measurements, breaks degeneracy in the parameter space. We present here a numerical fit to the multiwavelength observed spectrum using a new code that calculates the single-zone synchrotron including self-Compton emission, taking into account the exact Klein-Nishina cross sections, as well as pair production via absorption of the high-energy photons inside the emitting zone and the emission from the resulting secondary pairs. We also present a revised set of single-zone parameters and a method for fitting the data to the observations. Our model for GRB 190114C that fits all the observations, from the optical data point to the sub-TeV range, suggests that it is in the fast-cooling regime. The inferred parameters for observations at two separate moments of time show significant deviations from some of the common expectations in afterglow modeling but are all consistent with the predictions of the pair-balance model.
AB - The afterglow of GRB 190114C has been observed at 60-1200 s after the burst in the sub-TeV range by the MAGIC Cerenkov telescope. The simultaneous observations in the X-ray range, which is presumed to be of synchrotron origin, and in the sub-TeV range, where the emission is presumed to be inverse Compton, provide new stringent constraints on the conditions within the emitting regions and their evolution in time. While the additional data contain a lot of new information, it turns out that fitting both the X-ray and the TeV emission is much more complicated than what was originally anticipated. We find that optical flux measurements provide important complementary information that, in combination with TeV measurements, breaks degeneracy in the parameter space. We present here a numerical fit to the multiwavelength observed spectrum using a new code that calculates the single-zone synchrotron including self-Compton emission, taking into account the exact Klein-Nishina cross sections, as well as pair production via absorption of the high-energy photons inside the emitting zone and the emission from the resulting secondary pairs. We also present a revised set of single-zone parameters and a method for fitting the data to the observations. Our model for GRB 190114C that fits all the observations, from the optical data point to the sub-TeV range, suggests that it is in the fast-cooling regime. The inferred parameters for observations at two separate moments of time show significant deviations from some of the common expectations in afterglow modeling but are all consistent with the predictions of the pair-balance model.
UR - http://www.scopus.com/inward/record.url?scp=85123192683&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/ac2dec
DO - 10.3847/1538-4357/ac2dec
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85123192683
SN - 0004-637X
VL - 923
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 2
M1 - 135
ER -