H2+ photodissociation by an intense pulsed photonic Fock state

Amit K. Paul, Satrajit Adhikari, Michael Baer, Roi Baer

Research output: Contribution to journalArticlepeer-review

11 Scopus citations


We study the photodissociation of the H2+ molecule by ultrashort Fock-state electromagnetic pulses (EMPs). We use the Born-Oppenheimer treatment combined with an explicit photon number representation via diabatic electrophoton potential surfaces for simplification of the basic equations. We discuss the issue of the number of photon states required and show that six photon states enable good accuracy for photoproduct kinetic energies of up to 3 eV. We calculate photodissociation probabilities and nuclear kinetic-energy (KE) distributions of the photodissociation products for 800-nm, 50-TW/cm2 pulses. We show that KE distributions depend on three pulse durations of 10, 20, and 45 fs and on various initial vibrational states of the molecule. We compare the Fock-state results to those obtained by "conventional," i.e., coherent-state, laser pulses of equivalent electric fields and durations. The effects of the quantum state of EMPs on the photodissociation dynamics are especially strong for high initial vibrational states of H2+. While coherent-state pulses suppress photodissociation for the high initial vibrational states of H2+, the Fock-state pulses enhance it.

Original languageAmerican English
Article number013412
JournalPhysical Review A - Atomic, Molecular, and Optical Physics
Issue number1
StatePublished - 25 Jan 2010


Dive into the research topics of 'H2+ photodissociation by an intense pulsed photonic Fock state'. Together they form a unique fingerprint.

Cite this