Harnessing big data for estimating the energy consumption and driving range of electric vehicles

Gebeyehu M. Fetene, Sigal Kaplan, Stefan L. Mabit, Anders F. Jensen, Carlo G. Prato*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

107 Scopus citations

Abstract

Analyzing the factors that affect the energy efficiency of vehicles is crucial to the overall improvement of the environmental efficiency of the transport sector, one of the top polluting sectors at the global level. This study analyses the energy consumption rate (ECR) and driving range of battery electric vehicles (BEVs) and provides insight into the factors that affect their energy consumption by harnessing big data from real-world driving. The analysis relied on four data sources: (i) driving patterns collected from 741 drivers over a two-year period; (ii) drivers’ characteristics; (iii) road type; (iv) weather conditions. The results of the analysis measure the mean ECR of BEVs at 0.183 kW h/km, underline a 34% increase in ECR and a 25% decrease in driving range in the winter with respect to the summer, and suggest the electricity tariff for BEVs to be cost efficient with respect to conventional ones. Moreover, the results of the analysis show that driving speed, acceleration and temperature have non-linear effects on the ECR, while season and precipitation level have a strong linear effect. The econometric model of the ECR of BEVs suggests that the optimal driving speed is between 45 and 56 km/h and the ideal temperature from an energy efficiency perspective is 14 °C. Clearly, the performance of BEVs highly depends on the driving environment, the driving patterns, and the weather conditions, and the findings from this study enlighten the consumers to be more informed and manufacturers to be more aware about the actual utilization of BEVs.

Original languageAmerican English
Pages (from-to)1-11
Number of pages11
JournalTransportation Research Part D: Transport and Environment
Volume54
DOIs
StatePublished - 1 Jul 2017

Bibliographical note

Publisher Copyright:
© 2017

Keywords

  • Battery electric vehicles
  • Big data
  • Driving environment
  • Driving range
  • Energy consumption rate

Fingerprint

Dive into the research topics of 'Harnessing big data for estimating the energy consumption and driving range of electric vehicles'. Together they form a unique fingerprint.

Cite this