TY - JOUR
T1 - High Thermoelectric Performance in PbSe–NaSbSe2 Alloys from Valence Band Convergence and Low Thermal Conductivity
AU - Slade, Tyler J.
AU - Bailey, Trevor P.
AU - Grovogui, Jann A.
AU - Hua, Xia
AU - Zhang, Xiaomi
AU - Kuo, Jimmy Jiahong
AU - Hadar, Ido
AU - Snyder, G. Jeffrey
AU - Wolverton, Chris
AU - Dravid, Vinayak P.
AU - Uher, Ctirad
AU - Kanatzidis, Mercouri G.
N1 - Publisher Copyright:
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2019/8
Y1 - 2019/8
N2 - PbSe is an attractive thermoelectric material due to its favorable electronic structure, high melting point, and lower cost compared to PbTe. Herein, the hitherto unexplored alloys of PbSe with NaSbSe2 (NaPbmSbSem+2) are described and the most promising p-type PbSe-based thermoelectrics are found among them. Surprisingly, it is observed that below 500 K, NaPbmSbSem+2 exhibits unorthodox semiconducting-like electrical conductivity, despite possessing degenerate carrier densities of ≈1020 cm−3. It is shown that the peculiar behavior derives from carrier scattering by the grain boundaries. It is further demonstrated that the high solubility of NaSbSe2 in PbSe augments both the thermoelectric properties while maintaining a rock salt structure. Namely, density functional theory calculations and photoemission spectroscopy demonstrate that introduction of NaSbSe2 lowers the energy separation between the L- and Σ-valence bands and enhances the power factors under 700 K. The crystallographic disorder of Na+, Pb2+, and Sb3+ moreover provides exceptionally strong point defect phonon scattering yielding low lattice thermal conductivities of 1–0.55 W m-1 K-1 between 400 and 873 K without nanostructures. As a consequence, NaPb10SbSe12 achieves maximum ZT ≈1.4 near 900 K when optimally doped. More importantly, NaPb10SbSe12 maintains high ZT across a broad temperature range, giving an estimated record ZTavg of ≈0.64 between 400 and 873 K, a significant improvement over existing p-type PbSe thermoelectrics.
AB - PbSe is an attractive thermoelectric material due to its favorable electronic structure, high melting point, and lower cost compared to PbTe. Herein, the hitherto unexplored alloys of PbSe with NaSbSe2 (NaPbmSbSem+2) are described and the most promising p-type PbSe-based thermoelectrics are found among them. Surprisingly, it is observed that below 500 K, NaPbmSbSem+2 exhibits unorthodox semiconducting-like electrical conductivity, despite possessing degenerate carrier densities of ≈1020 cm−3. It is shown that the peculiar behavior derives from carrier scattering by the grain boundaries. It is further demonstrated that the high solubility of NaSbSe2 in PbSe augments both the thermoelectric properties while maintaining a rock salt structure. Namely, density functional theory calculations and photoemission spectroscopy demonstrate that introduction of NaSbSe2 lowers the energy separation between the L- and Σ-valence bands and enhances the power factors under 700 K. The crystallographic disorder of Na+, Pb2+, and Sb3+ moreover provides exceptionally strong point defect phonon scattering yielding low lattice thermal conductivities of 1–0.55 W m-1 K-1 between 400 and 873 K without nanostructures. As a consequence, NaPb10SbSe12 achieves maximum ZT ≈1.4 near 900 K when optimally doped. More importantly, NaPb10SbSe12 maintains high ZT across a broad temperature range, giving an estimated record ZTavg of ≈0.64 between 400 and 873 K, a significant improvement over existing p-type PbSe thermoelectrics.
KW - PbSe alloying
KW - band structure engineering
KW - grain boundary charge transport
KW - low thermal conductivity
KW - thermoelectric materials
UR - http://www.scopus.com/inward/record.url?scp=85068386923&partnerID=8YFLogxK
U2 - 10.1002/aenm.201901377
DO - 10.1002/aenm.201901377
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85068386923
SN - 1614-6832
VL - 9
JO - Advanced Energy Materials
JF - Advanced Energy Materials
IS - 30
M1 - 1901377
ER -