Abstract
The excitation function for the fusion-evaporation reaction 64Ni + 100Mo has been measured down to a cross section of ∼5 nb. Extensive coupled-channels calculations have been performed, which cannot reproduce the steep falloff of the excitation function at extreme sub-barrier energies. Thus, this system exhibits a hindrance for fusion, a phenomenon that has been discovered only recently. In the S-factor representation introduced to quantify the hindrance, a maximum is observed at Es = 120.6 MeV, which corresponds to 90% of the reference energy Esref, a value expected from systematics of closed-shell systems. A systematic analysis of Ni-induced fusion reactions leading to compound nuclei with mass A = 100-200 is presented in order to explore a possible dependence of fusion hindrance on nuclear structure.
Original language | English |
---|---|
Article number | 044613 |
Journal | Physical Review C - Nuclear Physics |
Volume | 71 |
Issue number | 4 |
DOIs | |
State | Published - Apr 2005 |