Abstract
In this paper a topological construction of representations of the An(1)-series of Hecke algebras, associated with 2-row Young diagrams will be given. This construction gives the representations in terms of the monodromy representation obtained from a vector bundle on which there is a natural flat connection. The fibres of the vector bundle are homology spaces of configuration spaces of points in C, with a suitable twisted local coefficient system. It is also shown that there is a close correspondence between this construction and the work of Tsuchiya and Kanie, who constructed Hecke algebra representations from the monodromy of n-point functions in a conformal field theory on P1. This work has significance in relation to the one-variable Jones polynomial, which can be expressed in terms of characters of the Iwahori-Hecke algebras associated with 2-row Young diagrams; it gives rise to a topological description of the Jones polynomial, which will be discussed elsewhere [L2].
Original language | English |
---|---|
Pages (from-to) | 141-191 |
Number of pages | 51 |
Journal | Communications in Mathematical Physics |
Volume | 135 |
Issue number | 1 |
DOIs | |
State | Published - Dec 1990 |
Externally published | Yes |