TY - JOUR
T1 - Hybrid pulse position modulation/ultrashort light pulse code division multiple access for data networking
AU - Marom, Dan M.
AU - Kim, Kwang Soon
AU - Milstein, Laurence B.
AU - Fainman, Yeshaiahu
PY - 2000
Y1 - 2000
N2 - Future data networks are required to support numerous high-capacity connections while providing simplified management and connectivity. To meet these requirements, we propose to utilize broadband ultrashort light pulses (ULP) in conjunction with pulse position modulation (PPM) as an efficient modulation format and code division multiple access (CDMA) for interference suppression. This networking format is operated asynchronously for simplified control, and requires minimal management for ensuring that the number of active users is below the limit at which multi-user interference generates excessive errors. The pulse positions can be detected at the receiver with high temporal resolution by utilizing a time-to-space conversion operating in real-time. The performance of the PPM/ULP-CDMA is found to depend on the following parameters: the ULP duration, the bandwidth of each spectral chip of the CDMA filter, and the ULP repetition time. We find that employing PPM improves the performance of the system relative to On-Off Keying (OOK). The performance can be further improved by increasing the number of PPM symbols, reducing the spectral chip bandwidth, and reducing the ratio of the pulse duration to repetition time. The performance analysis shows that the proposed system operates at a high bandwidth efficiency.
AB - Future data networks are required to support numerous high-capacity connections while providing simplified management and connectivity. To meet these requirements, we propose to utilize broadband ultrashort light pulses (ULP) in conjunction with pulse position modulation (PPM) as an efficient modulation format and code division multiple access (CDMA) for interference suppression. This networking format is operated asynchronously for simplified control, and requires minimal management for ensuring that the number of active users is below the limit at which multi-user interference generates excessive errors. The pulse positions can be detected at the receiver with high temporal resolution by utilizing a time-to-space conversion operating in real-time. The performance of the PPM/ULP-CDMA is found to depend on the following parameters: the ULP duration, the bandwidth of each spectral chip of the CDMA filter, and the ULP repetition time. We find that employing PPM improves the performance of the system relative to On-Off Keying (OOK). The performance can be further improved by increasing the number of PPM symbols, reducing the spectral chip bandwidth, and reducing the ratio of the pulse duration to repetition time. The performance analysis shows that the proposed system operates at a high bandwidth efficiency.
UR - http://www.scopus.com/inward/record.url?scp=0033724342&partnerID=8YFLogxK
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.conferencearticle???
AN - SCOPUS:0033724342
SN - 0277-786X
VL - 4089
SP - 479
EP - 484
JO - Proceedings of SPIE - The International Society for Optical Engineering
JF - Proceedings of SPIE - The International Society for Optical Engineering
T2 - Optics in Computing 2000
Y2 - 18 June 2000 through 23 June 2000
ER -