TY - JOUR
T1 - Hydrocolloid coating of Xenopus laevis embryos
AU - Kampf, N.
AU - Zohar, C.
AU - Nussinovitch, A.
PY - 2000
Y1 - 2000
N2 - A novel technology for coating single cells and embryos with thin hydrocolloid (water-soluble polymer) films has been invented and patented. Coating is different from entrapment and immobilization in that the coating around the cell is thinner, comprising only a small fraction of the cell or embryo's diameter. Xenopus laevis embryos were coated with thin films of low-methoxy pectin (LMP), alginate, and ι- and κ-carrageenans. These gums have different compositions and structures and as such created different coatings around the fertilized cells. All coated embryos appeared to develop normally, similar to noncoated embryos. Elemental detection by ICP-AES spectroscopy revealed that the embryo can control the diffusion of excess ions to which it is exposed during the coating process. The coatings delayed hatching by 18-24 h. Consequently, at hatch the embryos were at a more developed stage than their noncoated counterparts. The hydrocolloid coating reduced the thickness of the natural jelly coating (JC). With the ι-carrageenan coating, percent hatch was maximal, while with LMP it was minimal, as a result of the films' mechanical properties and thicknesses. LMP and alginate created smoother coatings than the carrageenans. Potential interactions between the coating and the natural JC are hypothesized. Overall, coatings appear to be a suitable tool for laboratories interested in performing longer-term experiments with embryos.
AB - A novel technology for coating single cells and embryos with thin hydrocolloid (water-soluble polymer) films has been invented and patented. Coating is different from entrapment and immobilization in that the coating around the cell is thinner, comprising only a small fraction of the cell or embryo's diameter. Xenopus laevis embryos were coated with thin films of low-methoxy pectin (LMP), alginate, and ι- and κ-carrageenans. These gums have different compositions and structures and as such created different coatings around the fertilized cells. All coated embryos appeared to develop normally, similar to noncoated embryos. Elemental detection by ICP-AES spectroscopy revealed that the embryo can control the diffusion of excess ions to which it is exposed during the coating process. The coatings delayed hatching by 18-24 h. Consequently, at hatch the embryos were at a more developed stage than their noncoated counterparts. The hydrocolloid coating reduced the thickness of the natural jelly coating (JC). With the ι-carrageenan coating, percent hatch was maximal, while with LMP it was minimal, as a result of the films' mechanical properties and thicknesses. LMP and alginate created smoother coatings than the carrageenans. Potential interactions between the coating and the natural JC are hypothesized. Overall, coatings appear to be a suitable tool for laboratories interested in performing longer-term experiments with embryos.
UR - http://www.scopus.com/inward/record.url?scp=0034045475&partnerID=8YFLogxK
U2 - 10.1021/bp0000252
DO - 10.1021/bp0000252
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 10835252
AN - SCOPUS:0034045475
SN - 8756-7938
VL - 16
SP - 480
EP - 487
JO - Biotechnology Progress
JF - Biotechnology Progress
IS - 3
ER -