Hydrometeorological analysis and forecasting of a 3 d flash-flood-Triggering desert rainstorm

Yair Rinat*, Francesco Marra, Moshe Armon, Asher Metzger, Yoav Levi, Pavel Khain, Elyakom Vadislavsky, Marcelo Rosensaft, Efrat Morin

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

Flash floods are among the most devastating and lethal natural hazards. In 2018, three flash-flood episodes resulted in 46 casualties in the deserts of Israel and Jordan alone. This paper presents the hydrometeorological analysis and forecasting of a substantial storm (25-27 April 2018) that hit an arid desert basin (Zin, <span classCombining double low line"inline-formula" g 1/41400 km2</span , southern Israel) claiming 12 human lives. This paper aims to (a) spatially assess the severity of the storm, (b) quantify the timescale of the hydrological response, and (c) evaluate the available operational precipitation forecasting. Return periods of the storm's maximal rain intensities were derived locally at 1 <span classCombining double low line"inline-formula" km2</span resolution using weather radar data and a novel statistical methodology. A high-resolution grid-based hydrological model was used to study the intra-basin flash-flood magnitudes which were consistent with direct information from witnesses. The model was further used to examine the hydrological response to different forecast scenarios. A small portion of the basin (1 %-20 %) experienced extreme precipitation intensities (75-To 100-year return period), resulting in a local hydrological response of a high magnitude (10-To 50-year return period). Hillslope runoff, initiated minutes after the intense rainfall occurred, reached the streams and resulted in peak discharge within tens of minutes. Available deterministic operational precipitation forecasts poorly predicted the hydrological response in the studied basins (tens to hundreds of square kilometers) mostly due to location inaccuracy. There was no gain from assimilating radar estimates in the numerical weather prediction model. Therefore, we suggest using deterministic forecasts with caution as it might lead to fatal decision making. To cope with such errors, a novel cost-effective methodology is applied by spatially shifting the forecasted precipitation fields. In this way, flash-flood occurrences were captured in most of the subbasins, resulting in few false alarms.

Original languageEnglish
Article number51
Pages (from-to)917-939
Number of pages23
JournalNatural Hazards and Earth System Sciences
Volume21
Issue number3
DOIs
StatePublished - 10 Mar 2021

Bibliographical note

Publisher Copyright:
© 2021 Copernicus GmbH. All rights reserved.

Fingerprint

Dive into the research topics of 'Hydrometeorological analysis and forecasting of a 3&thinsp;d flash-flood-Triggering desert rainstorm'. Together they form a unique fingerprint.

Cite this