Ice multiplication by breakup in ice-ice collisions. Part II: Numerical simulations

Vaughan T.J. Phillips*, Jun Ichi Yano, Marco Formenton, Eyal Ilotoviz, Vijay Kanawade, Innocent Kudzotsa, Jiming Sun, Aaron Bansemer, Andrew G. Detwiler, Alexander Khain, Sarah A. Tessendorf

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

55 Scopus citations

Abstract

In Part I of this two-part paper, a formulation was developed to treat fragmentation in ice-ice collisions. In the present Part II, the formulation is implemented in two microphysically advanced cloud models simulating a convective line observed over the U.S. high plains. One model is 2D with a spectral bin microphysics scheme. The other has a hybrid bin-two-moment bulk microphysics scheme in 3D. The case consists of cumulonimbus cells with cold cloud bases (near 0° C) in a dry troposphere. Only with breakup included in the simulation are aircraft observations of particles with maximum dimensions >0.2mmin the storm adequately predicted by both models. In fact, breakup in ice-ice collisions is by far the most prolific process of ice initiation in the simulated clouds (95%-98% of all nonhomogeneous ice), apart from homogeneous freezing of droplets. Inclusion of breakup in the cloud-resolving model (CRM) simulations increased, by between about one and two orders of magnitude, the average concentration of ice between about 0° and -30°C. Most of the breakup is due to collisions of snow with graupel/hail. It is broadly consistent with the theoretical result in Part I about an explosive tendency for ice multiplication. Breakup in collisions of snow (crystals > ~1mm and aggregates) with denser graupel/hail was the main pathway for collisional breakup and initiated about 60%-90% of all ice particles not from homogeneous freezing, in the simulations by both models. Breakup is predicted to reduce accumulated surface precipitation in the simulated storm by about 20%-40%.

Original languageEnglish
Pages (from-to)2789-2811
Number of pages23
JournalJournal of the Atmospheric Sciences
Volume74
Issue number9
DOIs
StatePublished - 1 Sep 2017

Bibliographical note

Publisher Copyright:
© 2017 American Meteorological Society.

Keywords

  • Cloud microphysics
  • Clouds
  • Hail
  • Ice particles

Fingerprint

Dive into the research topics of 'Ice multiplication by breakup in ice-ice collisions. Part II: Numerical simulations'. Together they form a unique fingerprint.

Cite this