Ice nanocrystals in glycerol-water mixtures

Yoshihito Hayashi, Alexander Puzenko, Yuri Feldman*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

30 Scopus citations

Abstract

We discuss the minimum size of ice nanoparticles in water-rich glycerol-water mixtures, as studied by broadband dielectric spectroscopy (BDS) in the frequency range from 1 Hz to 250 MHz and differential scanning calorimetry (DSC) at the temperature interval from 138 to 313 K. It is known that the extra water which is free from the glycerol hydrogen bond network forms the water cooperative domain. This cooperative domain leads to a freezing of water. With the formation of the frozen water state, another distinct water structure forms on the interface between the ice nanocrystal and mesoscopic glycerol-water domain. The mole fractions of different stages of water (i.e., water molecules in the mesoscopic domain, ice nanocrystals, and the interface between the two) were determined, and the minimum number of water molecules that can gain the bulk ice properties was estimated as ∼300 water molecules.

Original languageAmerican English
Pages (from-to)16979-16981
Number of pages3
JournalJournal of Physical Chemistry B
Volume109
Issue number35
DOIs
StatePublished - 8 Sep 2005

Fingerprint

Dive into the research topics of 'Ice nanocrystals in glycerol-water mixtures'. Together they form a unique fingerprint.

Cite this