TY - JOUR
T1 - Idealized annually averaged macroturbulent hadley circulation in a shallow-water model
AU - Adam, Ori
AU - Harnik, Nili
PY - 2013/1
Y1 - 2013/1
N2 - The interaction of midlatitude eddies and the thermally driven Hadley circulation is studied using an idealized shallow-water model on the rotating sphere. The contributions of the annually averaged differential heating, vertical advection of momentum from a stationary boundary layer, and the gross effect of eddies, parameterized by Rayleigh damping, including a hemispherically asymmetric damping, are examined at steady state. The study finds that the relative dominance of eddies, as quantified by the local Rossby number, is predicted by an effective macroturbulent Hadley circulation Prandtl number Pr. In addition, viscous solutions of the Hadley circulation width and strength, subtropical jet amplitude, and equator-to-pole temperature difference scale as deviations from the respective inviscid solutions. Semianalytic solutions for the steady circulation are derived in the limit of weak eddy dominance (small Pr) as deviations from the respective inviscid solutions. These solutions follow a three-region paradigm: weak temperature gradient at the ascending branch of the Hadley circulation, monotonically decreasing angular momentum at the descending branch, and modified radiative-convective equilibrium at the extratropics. Using the three-region solutions, scaling relations found in the full solutions are reproduced analytically. The weak eddy-dominance solutions diverge from the full solutions as Pr increases and may become invalid for Pr>1 due to the breakdown of the three-region global circulation structure. The qualitative predictions of the response of the Hadley circulation to heating based on the weak eddydominance solutions and Pr are in agreement with the findings of more complex models and the observed atmosphere.
AB - The interaction of midlatitude eddies and the thermally driven Hadley circulation is studied using an idealized shallow-water model on the rotating sphere. The contributions of the annually averaged differential heating, vertical advection of momentum from a stationary boundary layer, and the gross effect of eddies, parameterized by Rayleigh damping, including a hemispherically asymmetric damping, are examined at steady state. The study finds that the relative dominance of eddies, as quantified by the local Rossby number, is predicted by an effective macroturbulent Hadley circulation Prandtl number Pr. In addition, viscous solutions of the Hadley circulation width and strength, subtropical jet amplitude, and equator-to-pole temperature difference scale as deviations from the respective inviscid solutions. Semianalytic solutions for the steady circulation are derived in the limit of weak eddy dominance (small Pr) as deviations from the respective inviscid solutions. These solutions follow a three-region paradigm: weak temperature gradient at the ascending branch of the Hadley circulation, monotonically decreasing angular momentum at the descending branch, and modified radiative-convective equilibrium at the extratropics. Using the three-region solutions, scaling relations found in the full solutions are reproduced analytically. The weak eddy-dominance solutions diverge from the full solutions as Pr increases and may become invalid for Pr>1 due to the breakdown of the three-region global circulation structure. The qualitative predictions of the response of the Hadley circulation to heating based on the weak eddydominance solutions and Pr are in agreement with the findings of more complex models and the observed atmosphere.
UR - http://www.scopus.com/inward/record.url?scp=84871905215&partnerID=8YFLogxK
U2 - 10.1175/JAS-D-12-072.1
DO - 10.1175/JAS-D-12-072.1
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84871905215
SN - 0022-4928
VL - 70
SP - 284
EP - 302
JO - Journal of the Atmospheric Sciences
JF - Journal of the Atmospheric Sciences
IS - 1
ER -