Abstract
Human pluripotent stem cells (hPSCs) are known to acquire genetic aberrations during in vitro propagation. In addition to recurrent chromosomal aberrations, it has recently been shown that these cells also gain point mutations in cancer-related genes, predominantly in TP53. The need for routine quality control of hPSCs is critical for both basic research and clinical applications. Here we discuss the relevance of detecting mutations for various hPSCs applications, and present a detailed protocol to identify cancer-related point mutations using data from RNA sequencing, an assay commonly performed during the growth and differentiation of hPSCs. In this protocol, we describe how to process and align the sequencing data, analyze it and conservatively interpret the results in order to generate an accurate estimation of mutations in tumor-related genes. This pipeline is designed to work in high throughput and is available as a software container at https://github.com/elyadlezmi/RNA2CM. The protocol requires minimal command-line skills and can be carried out in 1–2 d.
Original language | American English |
---|---|
Pages (from-to) | 4522-4537 |
Number of pages | 16 |
Journal | Nature Protocols |
Volume | 16 |
Issue number | 9 |
DOIs | |
State | Published - Sep 2021 |
Bibliographical note
Funding Information:We thank S. Kinreich and A. Pagis for testing the pipeline and providing their constructive input and all members of The Azrieli Center for Stem Cells and Genetic Research for critical reading of the manuscript. This work was partially supported by the Israel Science Foundation (494/17), the Rosetrees Trust, and Azrieli Foundation. N.B. is the Herbert Cohn Chair in Cancer Research.
Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer Nature Limited.