Abstract
Motivation: Analysis of large-scale expression data is greatly facilitated by the availability of gene ontologies (GOs). Many current methods test whether sets of transcripts annotated with specific ontology terms contain an excess of 'changed' transcripts. This approach suffers from two main limitations. First, since gene expression is continuous rather than discrete, designating a gene as changed or unchanged is arbitrary and oblivious to the actual magnitude of the change. Second, by considering only the number of changed genes, finer changes in expression patterns associated with the category may be ignored. Since genes generally participate in multiple networks, widespread and subtle modifications in expression patterns are at least as important as extreme increases/decreases of a few genes. Results: Numerical simulations confirm that incorporating continuous measures of gene expression for all measured transcripts yields detection of considerably more subtle changes. Applying continuous measures to microarray data from brains of mice injected with the Parkinsonian neurotoxin, MPTP, enables detection of changes in various biologically relevant GO terms, many of which are overlooked by discrete approaches.
Original language | English |
---|---|
Pages (from-to) | 1129-1137 |
Number of pages | 9 |
Journal | Bioinformatics |
Volume | 21 |
Issue number | 7 |
DOIs | |
State | Published - 1 Apr 2005 |
Bibliographical note
Funding Information:We thank Dr. Eran Meshorer for an introduction to microarray experiments and for performing the initial experiments. This research was supported by grants from ISF(618/02-1) and the European Union (H.S.) Y.B.S. has been an incumbent of a post-doctoral fellowship from the Interdisciplinary Center for Computational Neuroscience.