Abstract
Personality traits can offer considerable insight into the biological basis of individual differences. However, existing approaches toward understanding personality across species rely on subjective criteria and limited sets of behavioral readouts, which result in noisy and often inconsistent outcomes. Here we introduce a mathematical framework for describing individual differences along dimensions with maximum consistency and discriminative power. We validate this framework in mice, using data from a system for high-throughput longitudinal monitoring of group-housed male mice that yields a variety of readouts from across the behavioral repertoire of individual animals. We demonstrate a set of stable traits that capture variability in behavior and gene expression in the brain, allowing for better-informed mechanistic investigations into the biology of individual differences.
Original language | American English |
---|---|
Pages (from-to) | 2023-2028 |
Number of pages | 6 |
Journal | Nature Neuroscience |
Volume | 22 |
Issue number | 12 |
DOIs | |
State | Published - 1 Dec 2019 |
Externally published | Yes |
Bibliographical note
Funding Information:The authors thank N. Eren, I. Couzin and C. Wotjak for their assistance, advice and constructive criticism. They thank M. Engel for her technical assistance with the RNA-seq experiment. Thanks are also given to J. Keverne for professional English editing, formatting and scientific input. Their thanks also go to O. Maoz for his unique insights into the mathematics and their interpretation. Finally, the authors would like to extend special thanks to the recently passed Chaya Tannor for fascinating discussions on human personality. A.C. receives financial support from serving as the Vera and John Schwartz Family Professorial Chair at the Weizmann Institute and as the head of the Max Planck Society—Weizmann Institute of Science Laboratory for Experimental Neuropsychiatry and Behavioral Neurogenetics. This work is supported by the following grants and agencies (to A.C.): a FP7 Grant from the European Research Council (260463); the Israel Science Foundation (1565/15); the ERANET Program; the Chief Scientist Office of the Israeli Ministry of Health; the Federal Ministry of Education and Research (01KU1501A); Roberto and Renata Ruhman; Bruno and Simone Licht; the I-CORE Program of the Planning and Budgeting Committee and The Israel Science Foundation (grant no. 1916/12); the Nella and Leon Benoziyo Center for Neurological Diseases; the Henry Chanoch Krenter Institute for Biomedical Imaging and Genomics; the Perlman Family Foundation, founded by Louis L. and Anita M. Perlman; the Adelis Foundation; the Marc Besen and the Pratt Foundation; and the Irving I. Moskowitz Foundation. S.K. is supported by the International Max Planck Research School for Translational Psychiatry (IMPRS-TP).
Publisher Copyright:
© 2019, The Author(s), under exclusive licence to Springer Nature America, Inc.