Abstract
To attain goals, people must proactively prevent interferences and react to interferences once they occur. Whereas most research focuses on how people deal with external interferences, here we investigate the use of proactive and reactive control in dealing with unwanted thoughts. To examine this question, we asked people to generate an association to each of several repeating cue words, while forbidding the repetition of associations. Reactively rejecting and replacing unwanted repeated associations after they occur entails slower response times. Conversely, proactive control entails constricting the search space and thus faster response times. To gain further insight into different potential proactive thought control mechanisms, we augmented the analysis of raw response times with a novel, hypothesis-based, tractable computational model describing how people serially sample associations. Our results indicate that people primarily react to unwanted thoughts after they occur. Yet, we found evidence for two latent proactive control mechanisms: one that allows people to mitigate the episodic strengthening of repeated thoughts, and another that helps avoid looping in a repetitive thought. Exploratory analysis showed a relationship between model parameters and self-reported individual differences in the control over unwanted thoughts in daily life. The findings indicate the novel task and model can advance our understanding of how people can and cannot control their thoughts and memories, and benefit future research on the mechanisms responsible for unwanted thought in different psychiatric conditions. Finally, we discuss implications concerning the involvement of associative thinking and various control processes in semantic fluency, decision-making and creativity.
Original language | English |
---|---|
Article number | e1010285 |
Journal | PLoS Computational Biology |
Volume | 18 |
Issue number | 7 |
DOIs | |
State | Published - Jul 2022 |
Bibliographical note
Publisher Copyright:Copyright: © 2022 Fradkin, Eldar. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.